ДИПЛОМНІ КУРСОВІ РЕФЕРАТИ


ИЦ OSVITA-PLAZA

Реферати статті публікації

Пошук по сайту

 

Пошук по сайту

Головна » Реферати та статті » Статистика » Бізнес-статистика та прогнозування

Причинность, регрессия, корреляция
Исследование объективно существующих связей между социально-экономическими явлениями и процессами является важнейшей задачей теории статистики. В процессе статистического исследования зависимостей вскрываются причинно-следственные отношения между явлениями, что позволяет выявлять факторы (признаки), оказывающие основное влияние на вариацию изучаемых явлений и процессов. Причинно-следственные отношения - это такая связь явлений и процессов, когда изменение одного из них - причины ведет к изменению другого - следствия.
Социально-экономические явления представляют собой результат одновременного воздействия большого числа причин. Следовательно, при изучении этих явлений необходимо выявлять главные, основные причины, абстрагируясь от второстепенных.
Статистическое изучение связи включает следующие этапы:
Качественный анализ, связанный с анализом природы социального или экономического явления методами экономической теории, социологии, конкретной экономики;
Построение модели связи. Реализация данного этапа базируется на методах статистики: группировках, средних величинах, и т.д.
Интерпретация результатов. Данный этап связан с качественными особенностями изучаемого явления.
Статистика разработала множество методов изучения связей. Выбор метода изучения связи зависит от познавательной цели и задач исследования.
Признаки по их сущности и значению для изучения взаимосвязи делятся на факторные и результативные. Признаки, обуславливающие изменения других, связанных с ними признаков, называются факторными, или просто факторами. Признаки, изменяющиеся под действием факторных признаков, называются результативными.
В статистике различают функциональную и стохастическую зависимости. Функциональной называют такую связь, при которой определенному значению факторного признака соответствует одно и только одно значение результативного признака.
Если причинная зависимость проявляется не в каждом отдельном случае, а в общем, среднем при большом числе наблюдений, то такая зависимость называется стохастической. Частным случаем стохастической связи является корреляционная связь, при которой изменение среднего значения результативного признака обусловлено изменением факторных признаков.
Связи между явлениями и их признаками классифицируются по степени тесноты, направлению и аналитическому выражению.
По степени тесноты связи различают (табл.5.1):
Таблица 5.1
Количественные критерии оценки тесноты связи
Величина показателя связи Характер связи
До (0,3 практически отсутствует
(0,3 - (0,5 слабая
(0,5 - (0,7 умеренная
(0,7 - (1,0 сильная

По направлению выделяют связь прямую и обратную. Прямая - это связь, при которой с увеличением или с уменьшением значений факторного признака происходит увеличение или уменьшение значений результативного признака. Обратная – это связь, при которой с увеличением или с уменьшением значений одного признака происходит уменьшение или увеличение значений другого признака.
По аналитическому выражению выделяют связи прямолинейные (или просто линейные) и нелинейные. Если статистическая связь между явлениями может быть приблизительно выражена уравнением прямой линии, то ее называют линейной связью вида:
(5.1)
Если же связь может быть выражена уравнением какой-либо кривой линии, то такую связь называют нелинейной или криволинейной, например:
параболы - (5.2)
гиперболы - ; и т.д., то такую связь называют нелинейной или криволинейной.
Для выявления наличия связи, ее характера и направления в статистике используются методы: приведения параллельных данных; графический; аналитических группировок; корреляции, регрессии.
Метод приведения параллельных данных основан на сопоставлении двух или нескольких рядов статистических величин. Такое сопоставление позволяет установить наличие связи и получить представление о ее характере.
Графически взаимосвязь двух признаков изображается с помощью поля корреляции. В системе координат на оси абсцисс откладываются значения факторного признака, а на оси ординат - результативного. Каждое пересечение линий, проводимых через эти оси, обозначаются точкой. При отсутствии тесных связей имеет место беспорядочное расположение точек на графике. Чем сильнее связь между признаками, тем теснее будут группи роваться точки вокруг определенной линии, выражающей форму связи.

Рис. 5.1. График корреляционного поля
Корреляция - это статистическая зависимость между случайными величинами, не имеющая строго функционального характера, при которой изменение одной из случайных величин приводит к изменению математического ожидания другой.
В статистике принято различать следующие варианты зависимостей:
Парная корреляция - связь между двумя признаками (результативным и факторным, или двумя факторными).
Частная корреляция - зависимость между результативным и одним факторным признаками при фиксированном значении других факторных признаков.
Множественная корреляция - зависимость результативного и двух или более факторных признаков, включенных в исследование.
Корреляционный анализ имеет своей задачей количественное определение тесноты и направления связи между двумя признаками (при парной связи) и между результативным и множеством факторных признаков (при многофакторной связи).
Теснота связи количественно выражается величиной коэффициентов корреляции, которые, давая количественную характеристику тесноты связи между признаками, позволяют определять «полезность» факторных признаков при построении уравнения множественной регрессии. Знаки при коэффициентах корреляции характеризуют направление связи между признаками.
Регрессия тесно связана с корреляцией и позволяет исследовать аналитическое выражение взаимосвязи между признаками.
Регрессионный анализ заключается в определении аналитического выражения связи, в котором изменение одной величины (называемой зависимой или результативным признаком), обусловлено влиянием одной или нескольких независимых величин (факторных признаков).
Одной из проблем построения уравнений регрессии является их размерность, то есть определение числа факторных признаков, включаемых в модель. Их число должно быть оптимальным. Сокращение размерности за счет исключения второстепенных, несущественных факторов позволяет получить модель, быстрее и качественнее реализуемую. В то же время, построение модели малой размерности может привести к тому, что она будет недостаточно полно описывать исследуемое явление или процесс.
При построении моделей регрессии должны соблюдаться следующие требования:
1. Совокупность исследуемых исходных данных должна быть однородной и математически описываться непрерывными функциями.
2. Возможность описания моделируемого явления одним или несколькими уравнениями причинно-следственных связей.
3. Все факторные признаки должны иметь количественное (числовое) выражение.
4. Наличие достаточно большого объема исследуемой выборочной совокупности.
5. Причинно-следственные связи между явлениями и процессами должны описываться линейной или приводимой к линейной форме зависимостью.
6. Отсутствие количественных ограничений на параметры модели связи.
7. Постоянство территориальной и временной структуры изучаемой совокупности.
Соблюдение данных требований позволяет построить модель, наилучшим образом описывающую реальные социально-экономические явления и процессы.

Ви переглядаєте статтю (реферат): «Причинность, регрессия, корреляция» з дисципліни «Бізнес-статистика та прогнозування»

Заказать диплом курсовую реферат
Реферати та публікації на інші теми: Повседневный опыт и научное знание
Етапи процесу кредитування
СТРУКТУРА ГРОШОВОГО РИНКУ
Визначення життєвого циклу проекту
Дисконтований період окупності


Категорія: Бізнес-статистика та прогнозування | Додав: koljan (23.09.2012)
Переглядів: 2239 | Рейтинг: 0.0/0
Всього коментарів: 0
Додавати коментарі можуть лише зареєстровані користувачі.
[ Реєстрація | Вхід ]

Онлайн замовлення

Заказать диплом курсовую реферат

Інші проекти




Діяльність здійснюється на основі свідоцтва про держреєстрацію ФОП