Длительность событий в разных системах отсчета. Пусть в некоторой точке (с координатой х), покоящейся относительно системы К, происходит событие, длительность которого (разность показаний часов в конце и начале события) τ = t2 – t1, где индексы 1 и 2 соответствуют началу и концу события. Длительность этого же события в системе К′ τ' = t'2 - t′1, (5.6) причем началу и концу события, согласно (5.5), соответствуют t′1 = , t′2 = . (5.7) Подставляя (5.7) в (5.6), получаем τ′ = (t2 – t1)/ = τ/ . (5.8) Из соотношения (5.8) вытекает, что τ < τ', т. е. длительность события, происходящего в некоторой точке, наименьшая в той инерциальной системе отсчета, относительно которой эта точка неподвижна. Этот результат может быть еще истолкован следующим образом: интервал времени τ', отсчитанный по часам в системе К', с точки зрения наблюдателя в системе К, продолжительнее интервала τ, отсчитанного по его часам. Следовательно, часы, движущиеся относительно инерциальной системы отсчета, идут медленнее покоящихся часов, т. е. ход часов замедляется в системе отсчета, относительно которой часы движутся. Длина тел в разных системах отсчета. Рассмотрим стержень, расположенный вдоль оси х' и покоящийся относительно системы К'. Длина стержня в системе К' будет l′0 = x′2 - х'1, где х'1 и x′2 - не изменяющиеся со временем t′ координаты начала и конца стержня, а индекс 0 показывает, что в системе отсчета К' стержень покоится. Определим длину этого стержня в системе К, относительно которой он движется со скоростью υ. Для этого необходимо измерить координаты его концов х1 и x2 в системе К в один и тот же момент времени t. Их разность l = х2 – x1 и даст длину стержня в системе К. Используя преобразования Лоренца (5.5), получим l′0 = x′2 - х'1 = - = = l/ . (5.9) Таким образом, длина стержня, измеренная в системе, относительно которой он движется, оказывается меньше длины, измеренной в системе, относительно которой стержень покоится. Если стержень покоится в системе К, то, определяя его длину в системе К', опять-таки придем к выражению (5.9). Из выражения (5.9) следует, что линейный размер тела, движущегося относительно инерциальной системы отсчета, уменьшается в направлении движения в раз, т. е. так называемое лоренцево сокращение длины тем больше, чем больше скорость движения.
Ви переглядаєте статтю (реферат): «Следствия из преобразований Лоренца» з дисципліни «Курс лекцій з загальної фізики, орієнтований на будівельні спеціальності»