ДИПЛОМНІ КУРСОВІ РЕФЕРАТИ


ИЦ OSVITA-PLAZA

Реферати статті публікації

Пошук по сайту

 

Пошук по сайту

Головна » Реферати та статті » Біологія » Біомеханіка

Прыжки
При прыжках обе ноги после сгибания в главных своих суставах (тазобедренных, коленных, голеностопных) выпрямляются быстрым и сильным сокращением разгибателей и отрываются от земли толчком, который передается телу. При этом прыжок или совершается на месте — тело поднимается в вертикальном направлении, или же телу сообщается поступательное движение вперед и вверх (рис. 15.40).


Рис. 15.40. Прыжки в длину с разбега

Прыжки в длину с разбега. Чем быстрее человек бежит, тем дальше он может прыгнуть. Кинетическая энергия бега может также при известных обстоятельствах использоваться для прыжков в высоту. На этом принципе основаны прыжки с шестом (G.H. Dyson, 1962).
Перед прыжком центр тяжести уже находится на высоте около 90 см над землей, а во время прыжка оказывается лишь немного выше планки. Например, при использовании метода «вестерн-ролл» центр тяжести (ЦТ) тела может подниматься над планкой на высоту около 15 см (G.H. Dyson, 1962).
Когда человек прыгает «с места», каждая из участвующих в этом акте мышц сокращается только один раз. Максимальная сила, развиваемая мышцей, пропорциональна площади ее поперечного сечения. Возможное укорочение мышцы пропорционально ее длине. Следовательно, работа, которую она может совершить при одиночном сокращении, пропорциональна произведению ее длины на площадь поперечного сечения, т. е. ее объему. Мышцы одинакового объема (или веса) способны совершать одинаковую работу. Представим теперь животное, масса которого т, а мышцы, участвующие в прыжке, — масса т'. Пусть эти мышцы при одиночном сокращении способны совершать работу Km'. Эта работа равна кинетической энергии, которую приобретает тело животного при отрыве от земли:

где и — скорость в момент отрыва. Если бы животное прыгнуло вертикально, оно поднялось бы на высоту . В случае прыжка под углом 45° оно опустилось бы на расстоянии от начального пункта. Поэтому можно ожидать, что разные животные, у которых отношения массы используемых при прыжке мышц к общей массе тела равны (т. е. равны величины ), способны прыгать на одинаковую высоту и одинаковое расстояние независимо от размеров тела.
Попробуем теперь исходить из иного предположения относительно мышц. Будем считать, что способность совершать прыжки ограничивается максимальной мощностью, которую могут развить мышцы, и что единица массы мышечной ткани может развивать мощность KI. Пусть за время от начала сокращения мышц до момента отрыва ног от земли центр тяжести (ЦТ) животного перемещается на расстояние l. Для большинства животных l будет немного меньше длины ног. Мы уже знаем, что к моменту отрыва от земли должна быть совершена работа . Чтобы найти необходимую мощность, нам нужно разделить эту работу на время t, за которое она производится. Проходя путь / за время t, животное увеличивает свою скорость от 0 до U. Предположим, что ускорение постоянно и используем уравнение. Тогда получим
(15.8)
Мощность, необходимая для совершения работы за это время, составляет , а мощность, которую могут развивать используемые при прыжке мышцы, равна Km1. Отсюда


Если животное отрывается с этой скоростью от земли вертикально вверх, оно достигает высоты. Если же оно отрывается под углом 45°, оно прыгнет на расстояние .
Для животных разной величины, но с одинаковой относительной массой мышц, используемых при прыжке, наибольшая высота и длина прыжков должна быть пропорциональна пути ускорения (т. е. пути, на котором скорость равномерно возрастает от 0 до и) в степени 2/3. Спортсмен может прыгнуть в длину с разбега на расстояние до 8 м. С помощью рассмотренных выше формул мы можем приблизительно определить начальную скорость, с которой спортсмен должен оторваться от земли (скорость отрыва). В случае оптимального угла отрыва от земли в 45° необходимая скорость определяется
из уравнения = 800, отсюда
и = (15.10)
Следовательно, скорость отрыва от земли составляет 885,8 см/с без учета сопротивления воздуха.
Если угол отрыва равен 55°, а дальность прыжка та же, то спортсмен должен отрываться от земли со скоростью, которую можно найти из уравнения


значит,

Если бы при этом ускорение было постоянным, его можно было бы вычислить по формуле:
(913)2=2a·4, (15.13)
а = 104196 см/сек2.

Если масса тела спортсмена равна m граммов, то для того, чтобы придать ему такое ускорение, понадобилась бы сила 104 196 m дин. Одна дина — это сила, необходимая для того, чтобы сообщить массе в 1 г ускорение, равное 1 см/с2 (т. е. увеличить ее скорость на 1 см/с за каждую секунду).


Рис. 15.41. Прыжки в воду.
а — из передней стойки полуоборот вперед согнувшись; - из передней стойки полтора оборота вперед «летом» согнувшись; в — полтора оборота назад с двумя с половиной винтами

Ви переглядаєте статтю (реферат): «Прыжки» з дисципліни «Біомеханіка»

Заказать диплом курсовую реферат
Реферати та публікації на інші теми: Неоінституційна теорія фінансування
СУЧАСНИЙ КЕЙНСІАНСЬКО-НЕОКЛАСИЧНИЙ СИНТЕЗ У ТЕОРІЇ ГРОШЕЙ
Інвестиційна стратегія
РОЗВИТОК КРЕДИТНИХ ВІДНОСИН В УКРАЇНІ В ПЕРЕХІДНИЙ ПЕРІОД
Дохідність залученого капіталу


Категорія: Біомеханіка | Додав: koljan (23.12.2012)
Переглядів: 1731 | Рейтинг: 0.0/0
Всього коментарів: 0
Додавати коментарі можуть лише зареєстровані користувачі.
[ Реєстрація | Вхід ]

Онлайн замовлення

Заказать диплом курсовую реферат

Інші проекти




Діяльність здійснюється на основі свідоцтва про держреєстрацію ФОП