ДИПЛОМНІ КУРСОВІ РЕФЕРАТИ


ИЦ OSVITA-PLAZA

Реферати статті публікації

Пошук по сайту

 

Пошук по сайту

Головна » Реферати та статті » Статистика » Теорія статистики

Расчет структурных характеристик ряда распределения
При изучении вариации применяются такие характеристики ряда распределения, которые описывают количественно его структуру, строение. Такова, например, медиана – величина варьирующего признака, делящая совокупность на две равные части – со значением признака меньше медианы и со значением признака больше медианы . В нашем примере про ВО (табл. 11 ) медиана – это 18-й таможенный пост из 35 с величиной ВО 56,8 млн.долл. Из этого примера видно принципиальное различие между медианой и средней величиной: медиана не зависит от значений на краях ранжированного ряда. Даже если бы ВО 35-го таможенного поста был в 10 раз больше, величина медианы не изменилась бы. Поэтому медиану часто используют как более надежный показатель типичного значения признака, нежели средняя арифметическая, если ряд значений неоднороден, включает резкие отклонения от средней. В интервальном ряду распределения для нахождения медианы применяется формула:
, (22 )
где Ме – медиана;
X0 – нижняя граница интервала, в котором находится медиана;
h – величина (размах) интервала;
– накопленная частота в интервале, предшествующем медианному;
fMe – частота в медианном интервале.
В табл. 12 медианным является среднее из 35 значений, т.е. 18-е от начала значение ВО. Как видно из столбца накопленных частот (6-й столбец), оно находится в третьем интервале. Тогда по формуле (22) :
(млн.долл.).
Аналогично медиане вычисляются значения признака, делящие совокупность на 4 равные по численности части – квартили, которые обозначаются заглавной латинской буквой Q с подписным значком номера квартиля. Ясно, что Q2 совпадает с Ме. Для первого и третьего квартилей приводим формулы и расчет по данным табл. 12 :
(млн.долл.)
(млн.долл.)
Так как Q2 = Ме = 59,30 млн.долл., видно, что различие между первым квартилем и медианой (–15,87) больше, чем между медианой и третьим квартилем (12,89). Этот факт свидетельствует о наличии некоторой несимметричности в средней области распределения, что заметно и на рис. 4 .
Значения признака, делящие ряд на 5 равных частей, называются квинтилями, на 10 частей – децилями, на 100 частей – перцентилями. Эти характеристики применяются при необходимости подробного изучения структуры ряда распределения .
Безусловно, важное значение имеет такая величина признака, которая встречается в изучаемом ряду распределения чаще всего. Такую величину принято называть модой. В дискретном ряду мода определяется без вычисления как значение признака с наибольшей частотой. Обычно встречаются ряды с одним модальным значением признака. Если в ряду распределения встречаются 2 или несколько равных (и даже несколько различных, но больших чем соседние) значений признака, то он считается соответственно бимодальным или мультимодальным. Это свидетельствует о неоднородности совокупности, возможно, представляющей собой агрегат нескольких совокупностей с разными модами. В интервальном ряду распределения интервал с наибольшей частотой является модальным. Внутри этого интервала находят условное значение признака, вблизи которого плотность распределения (число единиц совокупности, приходящихся на единицу измерения варьирующего признака) достигает максимума. Это условное значение и считается точечной модой. Логично предположить, что такая точечная мода располагается ближе к той из границ интервала, за которой частота в соседнем интервале больше частоты в интервале за другой границей модального интервала. Отсюда получаем обычно применяемую формулу (23) :
, (23 )
где Мо – мода;
Х0 – нижнее значение модального интервала;
fMo – частота в модальном интервале;
fMo-1 – частота в предыдущем интервале;
fMo+1 – частота в следующем интервале за модальным;
h – величина интервала.
По данным табл. 12 рассчитаем точечную моду по формуле (23) :
(млн.долл.).
К изучению структуры ряда распределения средняя арифметическая величина также имеет отношение, хотя основное значение этого обобщающего показателя другое. В интервальном ряду распределения ВО по таможенным постам средняя арифметическая рассчитывается как взвешенная по частоте середина интервалов X (расчет числителя – в 5-м столбце табл. 12 ) по формуле (11) :
= = 2128,85/35 = 60,82 (млн.долл.).
Различие между средней арифметической величиной (60,82), медианой (59,30) и модой (58,96) в нашем примере невелико. Чем ближе распределение по форме к нормальному закону, тем ближе значения медианы, моды и средней величины между собой.

Ви переглядаєте статтю (реферат): «Расчет структурных характеристик ряда распределения» з дисципліни «Теорія статистики»

Заказать диплом курсовую реферат
Реферати та публікації на інші теми: Где центр тяжести летящей ракеты?
Українські слова та слова запозичені з інших мов
СПОСОБИ РЕАЛІЗАЦІЇ ІНВЕСТИЦІЙНИХ ПРОЕКТІВ
ПЛАТІЖНИЙ БАЛАНС ТА ЗОЛОТОВАЛЮТНІ РЕЗЕРВИ В МЕХАНІЗМІ ВАЛЮТНОГО ...
Аудит збору на обов’язкове державне пенсійне страхування


Категорія: Теорія статистики | Додав: koljan (24.09.2012)
Переглядів: 936 | Рейтинг: 0.0/0
Всього коментарів: 0
Додавати коментарі можуть лише зареєстровані користувачі.
[ Реєстрація | Вхід ]

Онлайн замовлення

Заказать диплом курсовую реферат

Інші проекти




Діяльність здійснюється на основі свідоцтва про держреєстрацію ФОП