ДИПЛОМНІ КУРСОВІ РЕФЕРАТИ


ИЦ OSVITA-PLAZA

Реферати статті публікації

Пошук по сайту

 

Пошук по сайту

Головна » Реферати та статті » Астрономія » Загальна астрономія

ЛИНЗЫ, КОТОРЫЕ ПЕРЕВЕРНУЛИ КАРТИНУ МИРА
Как бы ни была развита космология Старого и Нового Света, сколько бы тысячелетий она ни насчитывала и в какие бы возвышенные мифологические, поэтические и научные образы ни облекалась, -- у нее был один непреодолимый недостаток: все наблюдения и вычисления производились исключительно на основе данных, полученных с помощью невооруженного глаза. По существу, вся история мировой астрономии и космологии делится на две не равные по времени части—до и после изобретения телескопа.
Но вначале был Коперник (1473--1543). Смелый мыслью, но не
духом, -- он жил и действовал с постоянной оглядкой на мнение
церковных иерархов и долгое время не решался опубликовать давно
написанный труд -- дело всей его жизни -- «Об обращении
небесных тел» (рис. 40). По существу, Коперник так и не увидел
всю книгу напечатанной. Она вышла в свет уже после его смерти,
а больному автору показывали лишь набранные листы.
Первоначально изданный труд, которому суждено было произвести
подлинную революцию в науке и умах, назывался «Шесть книг об
обращениях» («De Revolutionibus, libri VI»). Латинское слово в
ее названии действительно включает ту же лексическую основу,
что и слово «революция», дословно означая «переворот»,
«круговорот». Сказав Солнцу «Остановись!», как написано в эпитафии, посвященной Копернику, он поместил дневное светило в центре мироздания, доказав, что планеты вращаются вокруг него.
Еще до опубликования знаменитой книги Коперник активно распространял свои идеи в письмах и устных дискуссиях. Всю просвещенную Европу будоражили семь чеканных тезисов, сформулированных великим польским ученым и мыслителем:
Центр Земли не является центром мира. <...> Все, что мы видим движущимся на небосводе, объясняется вовсе не его собственным движением, а вызвано движением самой Земли. Это она вместе с ближайшими ее элементами совершает в течение суток вращательное движение вокруг своих неизменных полюсов и по отношению к прочно неподвижному небу. <...> Любое кажущееся движение Солнца не происходит от его собственного движения; это иллюзия, вызванная движением Земли и ее орбиты, по которой мы вращаемся вокруг Солнца или вокруг какой-то другой звезды, что означает, что Земля совершает одновременно несколько движений.
Николай Коперник. Очерк нового механизма мира
Идеи Коперника моментально стали мощным импульсом для
формирования нового мировоззрения и проведения астрономических
исследований. Провозвестником первого стал «неистовый Ноланец»
-- Джордано Бруно (1548--1600), сожженный на костре по
приговору инквизиции и за страстную пропаганду
гелиоцентрической системы мира, и за учение о множественности миров и бесконечности Вселенной.
Главным представителем опытных «бестелескопных» наблюдений был датчанин Тихо Браге (1546--1601) (рис. 41). Вместе с учениками (среди которых был и гениальный Кеплер) ему удалось составить удивительно точные таблицы движения светил, внести поправки в карту звездного неба, обнаружить происходящие там изменения (невероятно смелая и рискованная мысль в условиях господства доктрины абсолютной неизменности Мироздания). Тихо Браге, в частности, обосновывал это с помощью наблюдения за изменениями яркости обнаруженной им «новой звезды» (рис. 42). (Только в ХХ веке поняли, что Тихо Браге открыл редчайшую сверхновую звезду.) Ее открытие явилось громом среди ясного (точнее—звездного) неба. Дело в том, что и сам астроном, и весь ученый и неученый мир были убеждены: согласно Священному писанию, Вселенная была сотворена однажды и раз и навсегда. Со дня божественного творения в ней по определению -- как выражаются логики—ничего больше не должно появляться. А тут целая звезда! Сегодня данный феномен объясняется просто: вспыхнула сверхновая. Но в ХVI веке появление нового светила означало потрясение научно-теологических основ.
В Россию гелиоцентрические идеи проникли практически сразу же после их обнародования в Западной Европе (рис. 43). В ХVII веке русской читательской общественности был хорошо известен переводной трактат «Зерцало всея Вселенныя», где подробно излагалась теория Коперника. А спустя еще столетие в домах россиян можно было увидеть большую печатную космографическую картину с изображением «глобуса земного и небесного» (то есть карты звездного неба), где теория Коперника (наряду с системами Птолемея, Тихо Браге и Декарта) пояснялись не только прозаически, но и в стихах (виршах):
Коперник общую систему являет:
Солнце в середине вся мира утверждает.
Мнит движимей земли на четвертом небе быт, А луне окрест ея движение творит.
Солнцу из центра мира лучи простирати,
Оубо землю, луну и звезды освещати*.

Однако подлинная революция в наблюдательной астрономии произошла после появления в Европе первых телескопов. Изготовленные разными шлифовальщиками линз и торговцами очков, они демонстрировались то в одном, то в другом научном центре. На основании устных сведений уже в 1607 году великий Галилео Галилей (1564--1642) самостоятельно изготовил свой первый еще не вполне совершенный телескоп (рис. 43).
• Ровинский Д.А. Русские народные картинки. Кн. 2. Листы исторические, календари и буквари. Спб., 1881. С. 279.
Сначала я сделал себе свинцовую трубу, по концам которой я
приспособил два оптических стекла, оба с одной стороны плоские,
а с другой первое было сферически выпуклым, а второе --
вогнутым; приблизив затем глаз к вогнутому стеклу, я увидел
предметы достаточно большими и близкими; они казались втрое
ближе и в девять раз больше, чем при наблюдении их простым
глазом. После этого я изготовил другой прибор, более
совершенный, который представлял предметы более чем в
шестьдесят раз большими. Наконец, не щадя ни труда, ни
издержек, я дошел до того, что построил себе прибор до такой степени превосходный, что при его помощи предметы казались почти в тысячу раз больше и более чем в тридцать раз ближе, чем пользуясь только природными способностями. Сколько и какие удобства представляет этот инструмент как на земле, так и на море, перечислить было бы совершенно излишним. Но, оставив земное, я ограничился исследованием небесного...
Галилео Галилей. Звездный вестник
Перед изумленным ученым воистину открылась «бездна, звезд полна»: оказалось, что Млечный Путь состоит из бесчисленного множества маленьких звездочек, а между знакомыми звездами видны десятки и сотни новых, доселе незаметных для невооруженного глаза. На Луне Галилей обнаружил горы и долины. Были открыты спутники Юпитера и фазы Венеры. Казалось, мир должен немедленно обомлеть от восторга. Но даже бесспорные опытные данные вызывали неприятие и обвинения в фальсификации.
Очевидное—еще не значит общепризнанное. Хрестоматийным
фактом до сих пор считается показательное демонстрирование
Галилеем своего телескопа 24 ученым в Болонье. Ни один из них
не увидел спутников Юпитера, хотя в расположении звезд и планет
разбирались прекрасно. Даже ассистент Кеплера, горячий
сторонник гелиоцентрической системы, который был специально
делегирован великим ученым на публичную демонстрацию, не смог
толком ничего разглядеть. Вот что он сообщал в письме Кеплеру
по горячим следам: «Я так и не заснул 24 и 25 апреля, но
проверил инструмент Галилео тысячью разных способов и на земных
предметах, и на небесных телах. При направлении на земные
предметы он работает превосходно, при направлении на небесные
тела обманывает: некоторые неподвижные звезды [была упомянута,
например, Спика Девы] кажутся двойными. Это могут
засвидетельствовать самые выдающиеся люди и благородные
ученые... все они подтвердили, что инструмент обманывает... Галилео больше нечего было сказать, и ранним утром 26-го он печальный уехал... даже не поблагодарив Маджини за его роскошное угощение...»
Сам Маджини писал Кеплеру 26 мая: «Он ничего не достиг, так как никто из присутствовавших более двадцати ученых не видел отчетливо новых планет; едва ли он сможет сохранить эти планеты». Несколько месяцев спустя Маджини повторяет: «Лишь люди, обладающие острым зрением, проявили некоторую степень уверенности». После того как Кеплера буквально завалили отрицательными письменными отчетами о наблюдениях Галилея, он попросил у Галилея доказательств. «Я не хочу скрывать от Вас, что довольно много итальянцев в своих письмах в Прагу утверждают, что не могли увидеть этих звезд [лун Юпитера] через Ваш телескоп. Я спрашиваю себя, как могло случиться, что такое количество людей, включая тех, кто пользовался телескопом, отрицают этот феномен? Вспоминая о собственных трудностях, я вовсе не считаю невозможным, что один человек может видеть то, что не способны заметить тысячи... И все-таки я сожалею о том, что подтверждений со стороны других людей приходится ждать так долго... Поэтому, Галилео, я Вас умоляю как можно быстрее представить мне свидетельства очевидцев...» Галилей как раз-таки и ссылался на таких очевидцев, подтверждавших открытие великого итальянца. Но смысл этой удивительной переписки в другом: мало, оказывается, смотреть в телескоп -- нужно обладать не столько хорошим зрением, сколько зоркостью ума.
Под прицельным огнем инквизиции, только что отправившей на костер Джордано Бруно, Галилей продолжал отстаивать гелиоцентрическую концепцию Вселенной, подкрепляя ее все новыми и новыми астрономическими и физическими фактами. Затасканный по судам и тюрьмам, больной, полуослепший, но не сломленный, -- великий ученый явился открывателем новой эры в наблюдательной астрономии. С момента, когда Галилей направил сделанную собственноручно «трубу» в небо, начался отсчет практической революции—переворот в экспериментальном естествознании. В следующем веке весомый вклад в развитие наблюдательной астрономии внес Исаак Ньютон. Он изобрел принципиально новую «зрительную трубу» -- телескоп-рефлектор (рис. 45). Отныне телескоп сделался неотъемлемым и мощнейшим средством научного познания и в какой-то мере олицетворением прогресса самой науки.
Чем дальше проникали ученые в глубь Вселенной, тем более интригующими становились тайны Мироздания. Конечно, Тайна была всегда, и она, как спасительный огонек надежды, манила подвижников науки, больных и одержимых этой Тайной. Каждому чудилось: вот сейчас он распахнет дверь, и человечество шагнет из темноты незнания и заблуждения на широкий и светлый простор. Но действительность оказывалась совсем иной. За первой дверью обнаруживалась другая, столь же наглухо захлопнутая, за ней -- третья, четвертая, десятая, сотая. И так—без конца. Познание по неволе и необходимости превращается в непрерывное преодоление тайн. Каждый настоящий исследователь—царь Эдип, который ищет ответы на все новые и новые загадки Сфинкса-Природы.
Дальнейшее победное шествие науки в ХVII и ХVIII веках неотделимо от успехов теоретической и практической механики, неотъемлемой частью которой явилась небесная механика. Оно представлено величайшими умами, составившими гордость и славу человечества, творившими в разных странах: Иоганн Кеплер -- в Германии, Рене Декарт -- во Франции, Христиан Гюйгенс—в Голландии, Исаак Ньютон—в Англии, Михаил Ломоносов -- в России. В результате их усилий была обоснована механистическая картина Природы и Космоса. В науке на долгое время установились относительное единодушие и спокойствие.
В ХIХ веке наблюдательная астрономия по-прежнему опиралась
на прочный фундамент механистического мировоззрения, закон
всемирного тяготения, постоянные измерения и скрупулезный
математический расчет. В это время астрономия являлась одной из немногих естественных наук, где точные практические вычисления составляли основное занятие ученых. Некоторые выдающиеся открытия вообще делались «на кончике пера», то есть путем математических вычислений и расчетов за письменным столом. Так были открыты, к примеру, некоторые из крупных астероидов, а в дальнейшем -- две новые, ранее неизвестные планеты Солнечной системы—Нептун и Плутон.
Последнее открытие произошло уже в нашем веке. ХХ век вообще необычайно раздвинул границы наблюдательной астрономии. К чрезвычайно усовершенствованным оптическим телескопам (рис.
46) добавились новые, ранее совершенно невиданные --
радиотелескопы (рис. 47, 48), а затем и рентгеновские телескопы
(последние применимы только в безвоздушном пространстве и в
открытом космосе) (рис. 49). Точно так же исключительно с
помощью спутников и высотных аэростатов используются
гамма-телескопы, которые по существу представляют собой
счетчики g-фотонов (рис. 50), позволяющие зафиксировать
уникальную информацию о далеких объектах и экстремальных
состояниях материи во Вселенной (в частности, при помощи гамма-аппаратуры одно время усиленно пытались (и—теперь уже ясно—безуспешно) установить в отдаленных участках Космоса наличие изолированных областей, состоящих из антивещества). Данные, полученные с помощью новых приборов, отличны от привычных фотографий -- зато позволяют получить уникальные результаты.
На этом список новых представителей «телескопического
семейства» не исчерпывается. Правда, для регистрации
ультрафиолетового и инфракрасного излучения используются
обычные телескопы -- с той разницей, что в первом случае
применяются алюминированные зеркала, а во втором -- объективы
изготовляются из мышьяковистого трехсернистого стекла и других
специальных сортов стекла. Полученное из Космоса инфракрасное
излучение затем преобразуется в тепловую или фотонную энергию
для того, чтобы его было удобнее измерять. Как и в случае с
g-лучами, аппаратуру, регистрирующую инфракрасное излучение,
требуется поднимать на большие высоты. С ее помощью удалось
открыть много ранее неизвестных объектов, постичь важные,
нередко удивительные закономерности Вселенной. Так, вблизи
центра нашей галактики удалось обнаружить загадочный
инфракрасный объект, светимость которого в 300 000 раз
превышает светимость Солнца. Природа его неясна.
Зарегистрированы и другие мощные источники инфракрасного
излучения, находящиеся в других галактиках и внегалактическом пространстве.
Создания принципиально новой аппаратуры потребовала нейтринная астрономия. Опираясь на вывод физиков-теоретиков о существовании вездесущей и всепроникающей частицы нейтрино, которая образуется при термоядерных реакциях (в том числе происходящих в недрах Солнца и звезд), астрономы-практики предложили для ее регистрации (и, соответственно, получения уникальной информации) необычную установку, ничем не напоминающую привычный телескоп. Приборы размещают по принципу: не поближе к небесным объектам, а подальше (точнее—поглубже) от них. Наиболее подходящими для экспериментов оказались заброшенные шахты. Так, в 1967 году в Хоумстейкских шахтах в Южной Дакоте (США) на глубине 1490 метров была смонтирована мощная установка (рис. 51) в виде громадных баков, наполненных 400 000 литрами перхлорэтилена: согласно теоретическим расчетам он должен был получать и накапливать информацию о солнечных нейтрино (а, возможно, и от других источников). К сожалению, эксперимент не дал положительного результата. Но для науки это тоже результат! Впрочем, точка на нейтринной астрономии поставлена не была. Нейтринные детекторы живут и действуют, отбирая и накапливая информацию о космических частицах высоких и сверхвысоких энергий, поступающих из внеземных источников.
Существуют проекты и других, не менее экзотических «телескопов», например, детектора гравитационных волн (рис. 52), способных дать всеобъемлющую информацию о ранее неведомых тайнах Вселенной. И наверняка это не предел совершенствования астрономических средств наблюдения. Они непременно будут эволюционировать и дальше по мере развития самой науки.

Ви переглядаєте статтю (реферат): «ЛИНЗЫ, КОТОРЫЕ ПЕРЕВЕРНУЛИ КАРТИНУ МИРА» з дисципліни «Загальна астрономія»

Заказать диплом курсовую реферат
Реферати та публікації на інші теми: Довгострокове кредитування як форма участі банку в інвестиційному...
СИСТЕМИ АВТОМАТИЗОВАНОГО ПРОЕКТУВАННЯ ПРОДУКЦІЇ
ВИКОНАННЯ БУДІВЕЛЬНО-МОНТАЖНИХ РОБІТ
Аудит балансу підприємства
ВИЗНАЧЕННЯ ТА КЛАСИФІКАЦІЙНІ ОЗНАКИ ТОВАРІВ І ПОСЛУГ


Категорія: Загальна астрономія | Додав: koljan (09.04.2011)
Переглядів: 883 | Рейтинг: 0.0/0
Всього коментарів: 0
Додавати коментарі можуть лише зареєстровані користувачі.
[ Реєстрація | Вхід ]

Онлайн замовлення

Заказать диплом курсовую реферат

Інші проекти




Діяльність здійснюється на основі свідоцтва про держреєстрацію ФОП