Наличие свободных электронов в металлах приводит к высокой электропроводности кристаллов и объясняет высокий коэффициент отражения света. Наличие электронов проводимости (электронов, способных принимать участие в проводимости) обеспечивает также и силы межатомного взаимодействия. Кристаллы щелочных металлов можно рассматривать как систему правильно расположенных положительных зарядов, погруженных в однородную электронную жидкость. Связь, образованная наличием свободных электронов, не является сильной. Энергия связи щелочных металлов всего несколько десятков ккал/моль. В металлических кристаллах переходных элементов электроны незаполненных оболочек образуют дополнительно слабые химические связи, чем и объясняется значительно большая энергия связи кристаллов металлов переходных элементов (до 210 ккал/моль у металлического вольфрама W). Металлические кристаллы обычно кристаллизуются в высокосимметричные структуры, построенные по принципу плотнейшей упаковки шаров. Г. Молекулярные кристаллы. Как следует из названия, эти кристаллы построены из молекул, так что их свойства определяются в основном свойствами молекул, их составляющих. Поскольку все химические связи в молекулах насыщены, а заряды отсутствуют, силы связи в молекулярных кристаллах не могут быть ни ковалентными, ни ионными. Связь в таких кристаллах осуществляется слабыми силами Ван-дер-Ваальса. Природа этих сил следующая: даже в не дипольных молекулах существует флюктуирующий дипольный (или квадрупольный) момент, вызывающий появление индуцированного электрического момента в соседних молекулах. Взаимодействие этих электрических моментов в среднем приводит к притяжению соседних молекул (т.н. дисперсионные силы ). Силы притяжения очень слабы, поэтому молекулярные кристаллы имеют довольно низкую температуру плавления. Возникновение сил Ван-дер-Ваальса иллюстрируется рис.7, где рассмотрены два случая возникновения индуцированного момента p2 в поле диполя p1.
Рис.7. Схема взаимодействия диполей, определяющее Ван-дер-Ваальсовы силы. Энергия взаимодействия двух диполей выражается следующим образом:
и для случая взаимодействия диполей после усреднения по ориентациям равна U®=C/r6 , где C=4.67(10-60 эрг(см6. В случае диполь-квадрупольных и квадруполь-квадрупольных сил энергия взаимодействия равна U®=C`/r8 и U®=C``/r10 соответственно, где коэффициент C` равен 6.9(10-76 эрг(см8, а коэффициент C``=5.3(10-92 эрг(см10. Даже такое простое объяснение межмолекулярных сил дает хорошее соответствие с опытом. В кристалле инертного газа криптоне - расстояние между атомами R=3.76Å и оценка энергии связи диполь-дипольного типа дает значение, близкое к температуре плавления кристалла (84К ):
Равновесное положение частиц в кристалле определяется как силами притяжения, так и силами отталкивания, возникающими при перекрывании электронных оболочек соседних атомов (см.рис.8).
Рис.8. Зависимость полной энергии взаимодействия ионов K( и Cl- в решетке KCl от их взаимного расстояния. Структура кристалла хлористого калия такая же как структура кристалла NaCl (см. рис.10).
В инертных атомах считают, что силы отталкивания очень быстро возрастают при перекрывании атомных оболочек U ( A/r12, так что полный потенциал (Ленарда-Джонса-Девонашира) ведет себя следующим образом
Здесь 4((12=A, a 4((6=C
Полная энергия взаимодействия всех атомов в кристалле может быть получена суммированием U® по всем N частицам кристалла.
Коэффициент 1/2 появляется, поскольку в суммировании учитываются члены взаимодействия i-го и j-го атомов и, кроме того, j-го и i-го. В каждой сумме исключается член с одинаковыми значками i и j, т.е. исключаются члены взаимодействия i-го атома с i-м. Расстояния rij между любыми атомами i и j удобно выразить через расстояния между ближайшими атомами R и геометрические факторы решетки pij, определяемые только типом кристаллической решетки, т.е. учесть, что rij=pijR. Равенство в выражении для суммы как раз получено с учетом этого соотношения. Вычисления, проделанные по этой формуле для гранецентрированной кубической (ГЦК) структуры, показывают, что первая сумма в квадратных скобках равна величине (`=12.13188, а вторая (`=14.45392. Поскольку в положении равновесия производная от потенциальной энергии по координате (dUtot/dR)=0 при R=Ro равна нулю, то есть
расчетные значения параметров R0/( для ГЦК решетки будут (R0/()=1.09. Эмпирические значения этого отношения для некоторых молекулярных кристаллов со структурой ГЦК даны в табл.6, что показывает достаточно хорошее согласие теории с экспериментом.
Таблица 6.
ЗНАЧЕНИЯ R0/( ДЛЯ КРИСТАЛЛОВ ИНЕРТНЫХ ГАЗОВ
КРИСТАЛЛ
Ne Ar Kr Xe
R0/(
1.14 1.11 1.10 1.09
Таблица 7.
ТЕПЛОТЫ СУБЛИМАЦИИ В ккал/моль И ТЕМПЕРАТУРЫ ПЛАВЛЕНИЯ НЕКОТОРЫХ МОЛЕКУЛЯРНЫХ КРИСТАЛЛОВ
кристалл Энергия связи U, ккал/моль Температура, oK Температура, oK
плавления кипения
Ne Ar N2 Метан CH4 Cl2 Бензил C6H6 Нафталин C10H8 Антрацен C14H10 0.59 1.80 1.86 2.70 7.43 9.80 15.90 22.3
Эти результаты указывают, что потенциал Ленарда-Джонса-Девонашира хорошо описывает взаимодействие атомов в молекулярных кристаллах инертных газов. Величина энергии связи для этих кристаллов при Т=0К и нулевом давлении получаются одинаковыми для всех инертных газов: . Учет квантовомеханических поправок (с учетом кинетической энергии) уменьшает энергию связи на 28%, 10%, 6% и 4% для Nе, Ar, Kr и Xе соответственно и согласуются с экспериментальными величинами с точностью 1-7%. Кристаллы, образованные из многоатомных молекул, имеют более высокую энергию связи, поскольку в таких кристаллах друг с другом взаимодействуют отдельные части молекул (см. табл.7 и 8).
Таблица 8.
ЗАВИСИМОСТЬ ТЕМПЕРАТУР ПЛАВЛЕНИЯ Тплавл И КИПЕНИЯ Ткипен В РЯДУ НОРМАЛЬНЫХ ПАРАФИНОВ В оС