Одним из важнейших следствий уравнений Максвелла является существование электромагнитных волн. Для однородной и изотропной среды вдали от зарядов и токов, создающих электромагнитное поле, из уравнений Максвелла следует, что векторы напряженностей и переменного электромагнитного поля удовлетворяют волновому уравнению типа (22.13) , (24.1.) , (24.2.) где Δ - Оператор Лапласа, υ–фазовая скорость. Всякая функция, удовлетворяющая уравнениям (24.1) и(24.2), описывает некоторую волну. Следовательно, электромагнитные поля действительно могут существовать в виде электромагнитных волн. Фазовая скорость электромагнитных волн определяется выражением: , (24.3.) где скорость электромагнитной волны, ε0 и μ0 - соответственно электрическая и магнитная постоянные, ε и μ— соответственно электрическая и магнитная проницаемости среды. В вакууме (при ε = 1 и μ = 1) скорость распространения электромагнитных волн совпадает со скоростью с. Так как εμ > 1, то скорость распространения электромагнитных волн в веществе всегда меньше, чем в вакууме. При вычислении скорости распространения электромагнитного поля по формуле (24.3) получается результат, достаточно хорошо совпадающий с экспериментальными данными, если учитывать зависимость ε и μ от частоты. Совпадение же размерного коэффициента в (24.3) со скоростью распространения света в вакууме указывает на глубокую связь между электромагнитными и оптическими явлениями, позволившую Максвеллу создать электромагнитную теорию света, согласно которой свет представляет собой электромагнитные волны. Следствием теории Максвелла является поперечность электромагнитных волн: векторы и напряженностей электрического и магнитного полей волны взаимно перпендикулярны (на рис.24.2.) показана моментальная «фотография» плоской электромагнитной волны) и лежат в плоскости, перпендикулярной вектору v скорости распространения волны, причем векторы , и образуют правовинтовую систему. Из уравнений Максвелла следует также, что в электромагнитной волне векторы и всегда колеблются в одинаковых фазах (см. рис. 24.2), причем мгновенные значения и в любой точке связаны соотношением . (24.4.) Следовательно, Е и Н одновременно достигают максимума, одновременно обращаются в нуль и т. д. От волновых уравнений (24.1) и (24.2) можно перейти к уравнениям , (24.5) , (24.6.) где соответственно индексы у и z при H и E подчеркивают лишь то, что векторы и направлены вдоль взаимно перпендикулярных осей z и у.
Рис.24.2. Уравнениям (24.5) и (24.6) удовлетворяют, в частности, плоские монохроматические электромагнитные волны (электромагнитные волны одной строго определенной частоты), описываемые уравнениями , (24.7) , (24.8) где Е0 и Н0 — соответственно амплитуды напряженностей электрического и магнитного полей, ω— круговая частота волны, k =ω/( — волновое число, φ— начальные фазы колебаний в точках с координатой х = 0. В уравнениях (24.7) и (24.8) φ одинаково, так как колебания электрического и магнитного векторов в электромагнитной волне происходят с одинаковой фазой.
Ви переглядаєте статтю (реферат): «Дифференциальное уравнение электромагнитной волны» з дисципліни «Курс лекцій з загальної фізики, орієнтований на будівельні спеціальності»