ДИПЛОМНІ КУРСОВІ РЕФЕРАТИ


ИЦ OSVITA-PLAZA

Реферати статті публікації

Пошук по сайту

 

Пошук по сайту

Головна » Реферати та статті » Фізика » Еволюція фізики

ГЕОМЕТРИЯ И ОПЫТ
Наш следующий пример будет более фантастичным, чем пример с падающим лифтом. Мы должны подойти к новой проблеме, проблеме связи между общей теорией относительности и геометрией. Начнем с описания мира, в котором живут лишь двухмерные, а не трехмерные существа, как в нашем. Кинематограф приучил нас к двухмерным существам, действующим на двухмерном экране. Представим себе теперь, что эти теневые фигуры, действующие на экране, действительно существуют, что они обладают способностью мышления, что они могут создавать свою собственную науку, что для них двухмерный экран олицетворяет геометрическое пространство. Эти существа не в состоянии представить себе наглядным образом трехмерное пространство, так же, как мы не в состоянии представить мир четырех измерений. Они могут изогнуть прямую линию; они знают, что такое круг, но они не в состоянии построить сферу, потому что это означало бы покинуть их двухмерный экран. Мы находимся в таком же положении. Мы в состоянии изогнуть и линии, и поверхности, но мы с трудом можем представить искривленное пространство.
Живя, мысля и экспериментируя, наши теневые фигуры могли бы, возможно, овладеть знанием двухмерной евклидовой геометрии. Таким образом, они могли бы доказать, что сумма углов в треугольнике равна 180 градусам. Они могли бы построить два круга с общим центром, один очень малый, а другой большой. Они нашли бы, что отношение длин окружностей двух таких кругов равно отношению их радиусов — результат, опять характерный для евклидовой геометрии. Если бы экран был бесконечно велик, то наши теневые существа нашли бы, что, отправившись однажды в путешествие вперед по прямой, они никогда не вернулись бы к своей отправной точке.
Представим себе теперь, что эти двухмерные существа живут в измененных условиях. Предположим, что кто-то извне, из «третьего измерения» перенес их с экрана на поверхность сферы с очень большим радиусом. Если эти тени очень малы по отношению ко всей поверхности, если у них нет средств дальнего сообщения и они не могут двигаться очень далеко, то они не обнаружат какого-либо изменения. Сумма углов в малых треугольниках еще составляет 180 градусов. Отношение радиусов двух малых кругов с общим центром еще равно отношению длин их окружностей.
Но пусть эти теневые существа с течением времени развивают свои теоретические и технические познания. Пусть ими найдены средства сообщения, позволяющие им быстро покрывать огромные расстояния. Тогда они найдут, что, отправляясь в путешествие прямо вперед, они, в конце концов, вернутся к своей исходной точке. «Прямо вперед» означает вдоль большого круга сферы. Они найдут также, что отношение длин двух концентрических окружностей не равно отношению радиусов, если один из радиусов мал, а другой велик.
Если наши двухмерные существа консервативны, если их поколения изучали евклидову геометрию в прошлом, когда они не могли далеко путешествовать и когда эта геометрия соответствовала наблюдаемым фактам, то они, конечно, сделают все возможное, чтобы сохранить ее, несмотря на очевидность своих измерений. Они постараются заставить физику нести бремя этих противоречий. Они станут искать какие-либо физические основания, скажем, различие температур, деформирующее линии и вызывающее отклонение от евклидовой геометрии. Но раньше или позже они должны будут найти, что имеется гораздо более логический и последовательный путь описания этих явлений. Они окончательно поймут, что их мир конечен, что его геометрические принципы отличны от тех, которые они изучали. Несмотря на свою неспособность представить себе свой мир, они поймут, что он есть двухмерная поверхность сферы. Они скоро изучат новые принципы геометрии, которая, хотя и отличается от евклидовой, тем не менее может быть сформулирована так же последовательно и логично для их двухмерного мира. Новому поколению, воспитанному на знании сферической геометрии, старая евклидова геометрия будет казаться более сложной и искусственной, так как она не соответствует наблюдаемым фактам.
Вернемся к трехмерным существам нашего мира.
Что это значит, когда утверждают, что наше трехмерное пространство имеет евклидов характер? Смысл этого в том, что все логически доказанные положения евклидовой геометрии могут быть точно подтверждены действительным экспериментом. С помощью твердых тел или световых лучей мы можем построить объекты, соответствующие идеализированным объектам евклидовой геометрии. Ребро линейки или световой луч соответствуют прямой. Сумма углов треугольника, построенного из тонких жестких стержней, равна 180 градусам. Отношение радиусов двух концентрических окружностей, построенных из тонкой упругой проволоки, равно отношению длин окружностей. Истолкованная таким образом евклидова геометрия становится главой физики, хотя и очень простой ее главой.
Но мы можем представить себе, что обнаружены противоречия: например, что сумма углов большого треугольника, построенного из стержней, которые по многим основаниям должны были считаться твердыми, не равна 180 градусам. Так как мы уже прибегали к идее конкретного представления объектов евклидовой геометрии с помощью твердых тел, то мы, вероятно, стали бы искать какие-либо физические силы, которые явились причиной такого неожиданного поведения наших стержней. Мы постарались бы найти физическую природу этих сил и их влияние на другие явления. Чтобы спасти евклидову геометрию, мы обвинили бы объекты в том, что они не тверды, что они не точно соответствуют объектам евклидовой геометрии. Мы постарались бы найти лучшие тела, ведущие себя так, как это ожидается согласно евклидовой геометрии. Если бы, однако, нам не удалось объединить евклидову геометрию и физику в простую и последовательную картину, то мы должны были бы отказаться от идеи, что наше пространство евклидово, и искать более последовательную картину реальности на основе более общих предположений о геометрических свойствах нашего пространства.
Необходимость этого может быть проиллюстрирована с помощью идеализированного эксперимента, показывающего, что действительно релятивистская физика не может основываться на евклидовой геометрии. Наши рассуждения будут предполагать, что уже известны выводы, касающиеся инерциальной системы координат, а также специальная теория относительности.
Представим себе большой диск с двумя концентрическими окружностями, нарисованными на нем; одна из этих окружностей мала, другая очень велика (рис. 66).

Диск быстро вращается. Он вращается относительно внешнего наблюдателя; пусть имеется еще внутренний наблюдатель, помещающийся на диске. Предположим далее, что система координат внешнего наблюдателя инерциальна. Внешний наблюдатель может нарисовать в своей инерциальной системе две такие же окружности — малую и большую, покоящиеся в его системе, но совпадающие с окружностями на вращающемся диске. Евклидова геометрия справедлива в его системе координат, так как его система инерциальна,— так что отношение длин окружностей равно отношению радиусов. А что же находит наблюдатель на диске? С точки зрения классической физики, а также специальной теории относительности его система координат недопустима. Но если мы стремимся найти новую форму физических законов, справедливую в любой системе координат, то мы должны рассматривать наблюдателя на диске и наблюдателя внешнего с одинаковой серьезностью. Теперь мы извне следим за попыткой внутреннего наблюдателя найти путем измерения длины окружностей и радиусов на вращающемся диске. Он использует такой же небольшой измерительный масштаб, какой был использован внешним наблюдателем. «Такой же» означает либо действительно тот же, просто переданный внешним наблюдателем внутреннему, либо один из двух масштабов, имеющих одинаковую длину в покоящейся системе координат.
Внутренний наблюдатель на диске начинает измерение радиуса и длины окружности малого круга. Его результат может оказаться таким же, как и результат внешнего наблюдателя. Ось, на которой вращается диск, проходит через центр. Те части диска, которые близки к центру, имеют очень небольшие скорости. Если окружность достаточно мала, мы можем спокойно применить классическую механику и не обращать внимания на специальную теорию относительности. Это означает, что отрезок имеет одинаковую длину как для внешнего, так и для внутреннего наблюдателя, и результат двух измерений будет одинаков для них обоих. Теперь наблюдатель на диске измеряет радиус большой окружности. Помещенный на радиусе отрезок движется относительно внешнего наблюдателя. Однако такой отрезок не сокращается и будет иметь одинаковую длину для обоих наблюдателей, так как направление движения перпендикулярно к отрезку. Таким образом, три измерения одинаковы для обоих наблюдателей: два радиуса и малая окружность. Но не так обстоит дело с четвертым измерением. Длина большой окружности будет различна для обоих наблюдателей. Отрезок, помещенный на окружности в направлении движения, теперь будет казаться сокращенным для внешнего наблюдателя сравнительно с соответствующим ему покоящимся отрезком. Скорость на внешней окружности гораздо больше, чем скорость на внутренней окружности, и это сокращение должно быть учтено. Поэтому, если мы применим выводы специальной теории относительности, наше заключение будет таково: длина большой окружности должна быть различной, если она измеряется обоими наблюдателями. Так как только одна из четырех длин, измеренных обоими наблюдателями, не будет одинаковой для обоих, то для внутреннего наблюдателя отношение обоих радиусов не может быть равным отношению окружностей, как это имеет место для внешнего наблюдателя. Это означает, что наблюдатель на диске не может подтвердить справедливость евклидовой геометрии в своей системе.
После получения этого результата наблюдатель на диске может сказать, что он не хочет рассматривать систему координат, в которой несправедлива евклидова геометрия. Нарушение евклидовой геометрии обязано абсолютному вращению, тому факту, что система координат, с которой связан наблюдатель, плоха и недопустима. Но, утверждая это, он отвергает важную идею общей теории относительности. С другой стороны, если мы хотим отвергнуть абсолютное движение и сохранить идею об общей относительности, то вся физика должна быть построена на основе более общей геометрии, чем евклидова. Нет возможности избежать этих следствий, если допустимы все системы координат.
Изменения, произведенные общей теорией относительности, не могут ограничиваться одним пространством. В специальной теории относительности у нас были часы, покоящиеся в каждой из систем координат, имеющие одинаковый ритм и синхронизированные, т. е. показывающие одинаковое время в один и тот же момент. Что происходит с часами в неинерциальной системе координат? Идеализированный эксперимент с диском снова будет нам полезен. Внешний наблюдатель имеет в своей инерциальной системе совершенные часы, которые все синхронизированы, все имеют одинаковый ритм. Внутренний наблюдатель берет двое часов одинакового сорта и помещает одни из них на малую внутреннюю окружность, а другие на большую внешнюю. Часы на внутренней окружности имеют очень небольшую скорость по отношению к внешнему наблюдателю. Поэтому мы можем спокойно заключить, что их ритм будет одинаков с ритмом внешних часов. Но часы на большой окружности имеют значительную скорость, изменяющую их ритм сравнительно с часами внешнего наблюдателя, а стало быть, и сравнительно с часами, помещенными на малой окружности. Таким образом, двое вращающихся часов будут иметь различный ритм, а применяя выводы специальной теории относительности, мы снова видим, что мы не можем во вращающейся системе создать какие-либо приборы, подобные приборам в инерциальной системе координат. Чтобы выяснить, какие выводы могут быть сделаны из этого и из описанных ранее идеализированных экспериментов, приведем еще раз разговор между старым физиком С, который верит в классическую физику, и современным физиком Н, который признает общую теорию относительности. Пусть С будет внешним наблюдателем в инерциальной системе координат, а Н — наблюдателем на вращающемся диске.
С. В вашей системе евклидова геометрия несправедлива. Я следил за вашими измерениями и я согласен, что отношение двух окружностей в вашей системе не равно отношению их радиусов. Но это показывает, что ваша система координат недопустима. А моя система — инерциального характера, и я свободно могу применять евклидову геометрию. Ваш диск находится в абсолютном движении и с точки зрения классической физики образует недопустимую систему, в которой законы механики несправедливы.
Н. Я не хочу ничего слышать об абсолютном движении. Моя система так же хороша, как и ваша. Что я заметил, так это ваше вращение по отношению к моему диску. Никто не может мне запретить отнести все движения к моему диску.
С. Но не чувствовали ли вы странной силы, стремящейся удалить вас от центра диска? Если бы ваш диск не был быстро вращающейся каруселью, то две вещи, которые вы наблюдали, конечно, не имели бы места. Вы не заметили бы силы, толкающей вас к границе диска, и не заметили бы, что евклидова геометрия неприменима в вашей системе. Не достаточны ли эти факты, чтобы убедить вас, что ваша система находится в абсолютном движении?
Н. Вовсе нет! Я, конечно, заметил оба факта, упомянутые вами, но я полагаю, что оба они вызываются сильным полем тяготения, действующим на мой диск. Поле тяготения, направленное от центра диска, деформирует мои твердые тела и изменяет ритм моих часов. Поле тяготения, неевклидова геометрия, часы с различным ритмом — все это кажется мне тесно связанным. Принимая какую-либо систему координат, я должен одновременно предположить наличие соответствующего поля тяготения и его влияние на твердые тела и часы.
С. Но вы знаете о трудностях, вызванных вашей общей теорией относительности? Мне хотелось бы сделать свою точку зрения ясной, приведя простой не физический пример. Представим себе идеализированный американский город, состоящий из параллельных улиц с параллельными проспектами, расположенными перпендикулярно к ним (рис. 67).

Расстояние между улицами, а также между проспектами всюду одно и то же. Поскольку это так, то и кварталы совершенно одинаковы по величине. Таким путем я могу легко характеризовать положение любого квартала. Но это построение было бы невозможно без евклидовой геометрии. Таким образом, например, мы не можем покрыть всю нашу Землю одним большим идеальным американским городом. Один взгляд на глобус убедит вас в этом. Но мы не могли бы покрыть и ваш диск такой «американской городской конструкцией». Вы утверждаете, что ваши стержни деформированы гравитационным полем. Тот факт, что вы не могли подтвердить теорему Евклида о равенстве отношений радиусов и окружностей, ясно показывает, что если вы продолжите такое строительство улиц и проспектов достаточно далеко, то рано или поздно вы придете к трудностям и найдете, что оно невозможно на вашем диске. Ваша геометрия па вращающемся диске подобна геометрии на кривой поверхности, где, конечно, указанное построение улиц и проспектов на достаточно большой части поверхности невозможно. Для того чтобы пример был более физическим, возьмем пластинку, неравномерно нагретую, с различной температурой в разных частях поверхности. Можете ли вы с помощью тонких железных прутов, длина которых увеличивается от нагревания, выполнить «параллельно-перпендикулярное» построение, нарисованное мною ниже? Конечно, нет! Ваше «поле тяготения» разыгрывает над вашими стержнями ту же шутку, что и изменение температуры над тонкими железными прутами.
Н. Все это не пугает меня. Построение улиц и проспектов необходимо для того, чтобы определить положения точек, часы — для того, чтобы установить порядок событий. Вовсе не необходимо, чтобы город был американским: с таким же успехом он может быть и древнеевропейским. Представим себе идеализированный город, построенный из пластичного материала и затем деформированный (рис. 68).

Я могу все еще подсчитать кварталы и узнать улицы и проспекты, хотя они уже больше не прямые и не равноудалены друг от друга. Подобно этому долготы и широты отмечают положения точек на нашей Земле, хотя на ней и нельзя осуществить построения «американского города».
С. Но я вижу еще трудность. Вы вынуждены использовать вашу «европейскую городскую структуру». Я согласен, что вы можете установить порядок точек или времени событий, но это построение спутает все измерения расстояний. Оно не даст вам метрические свойства пространства, как это дает мое построение. Возьмем пример. Я знаю, что пройдя в моем американском городе десять кварталов, я дважды покрою расстояние пяти кварталов. Так как я знаю, что все кварталы равны, я сразу же могу определить расстояния.
Н. Это верно. В моей «европейской городской структуре» я не могу сразу же определить расстояния числом деформированных кварталов. Я должен знать кое-что большее; я должен знать геометрические свойства моей поверхности. Совершенно так же каждый знает, что расстояние между 0° и 10° долготы на экваторе не равно расстоянию между теми же долготами вблизи Северного полюса. Но всякий штурман знает, как оценить расстояние между двумя такими точками на нашей Земле, ибо он знает ее геометрические свойства. Он может сделать это либо путем подсчета, основываясь на знании сферической тригонометрии, либо экспериментальным путем, проводя свой корабль по обоим путям с одинаковой скоростью. В вашем случае вся проблема тривиальна, ибо все улицы и проспекты равно отстоят друг от друга. В случае нашей Земли это уже более сложно; два меридиана 0° и 10° пересекаются на земных полюсах и наиболее отдалены друг от друга на экваторе. Подобно этому, чтобы определять расстояния, я должен знать в своей «европейской городской структуре» нечто большее, чем вы в своей «американской городской структуре». Я могу получить эти дополнительные знания изучением геометрических свойств моего континуума в каждом отдельном случае.
С. Все это только показывает, к какому неудобству и сложности приводит потеря простой структуры евклидовой геометрии ради запутанных построений, которые вы обязаны употреблять. Действительно ли это необходимо?
Н. Боюсь, что да, если мы желаем применять нашу физику в любой системе координат, не прибегая к таинственной инерциальной системе. Я согласен, что мой математический аппарат гораздо сложнее вашего, но зато мои физические предположения более просты и естественны.
Дискуссия ограничивалась двухмерным континуумом. Предмет спора в общей теории относительности еще более сложен, так как там — не двухмерный, а четырехмерный пространственно-временной континуум. Но идеи те же, что и набросанные здесь для случая двухмерного пространства. В общей теории относительности мы не можем применять механических построений, с помощью сети параллельно-перпендикулярных стержней и синхронизированных часов, как в специальной теории относительности. В произвольной системе координат мы не можем определить точку и момент времени, в которые произошло событие, используя твердые стержни и ритмичные и синхронизированные часы, как в инерциальной системе координат специальной теории относительности. Мы по-прежнему можем установить порядок событий с помощью наших неевклидовых стержней и часов с различным ритмом. Но действительные измерения, требующие твердых стержней и совершенных ритмичных и синхронизированных часов, могут быть выполнены только в локальной инерциальной системе. Для такой системы справедлива вся специальная теория относительности. Но наша «хорошая» система координат только локальна, ее инерциальный характер ограничен в пространстве и времени. Даже в нашей произвольной системе координат мы можем предвидеть результаты измерений, сделанные в локальной инерциальной системе. Но для этого мы должны знать геометрический характер нашего пространственно-временного континуума.

Ви переглядаєте статтю (реферат): «ГЕОМЕТРИЯ И ОПЫТ» з дисципліни «Еволюція фізики»

Заказать диплом курсовую реферат
Реферати та публікації на інші теми: РОЗВИТОК ПРИНЦИПІВ СИСТЕМНОГО, КОМПЛЕКСНОГО УПРАВЛІННЯ ЯКІСТЮ
Індивідуальні та інституційні інвестори
РЕСУРСНЕ ЗАБЕЗПЕЧЕННЯ ІНВЕСТИЦІЙНОГО ПРОЦЕСУ
ГОЛОВНІ РИНКОВІ ХАРАКТЕРИСТИКИ ТОВАРУ
Іменник


Категорія: Еволюція фізики | Додав: koljan (09.11.2013)
Переглядів: 586 | Рейтинг: 0.0/0
Всього коментарів: 0
Додавати коментарі можуть лише зареєстровані користувачі.
[ Реєстрація | Вхід ]

Онлайн замовлення

Заказать диплом курсовую реферат

Інші проекти




Діяльність здійснюється на основі свідоцтва про держреєстрацію ФОП