Подходя к рассмотрению техники расчетов главных компонент, выразим их модель с использованием не абсолютных значений вкладов разных признаков, но относительных. Если значение отдельной варианты есть сумма вкладов разных факторов , то величина вклада в значение варианты отдельного фактора составит некую долю от общего значения варианты: , где aj – относительный вклад данного фактора в конечное значение варианты, xj – значение варианты признака j. Используя это преобразование, а также исходную формулу , получаем уравнение первой главной компоненты: , второй: и так далее. Общая модель компонентного анализа примет вид: , где l – номер компоненты, l = 1, 2,… k (значимых компонент всегда меньше, чем признаков, k ≤ m). Как же практически можно определить, какую долю каких факторов содержит в себе каждое значение исходных признаков, т. е. чему равны конкретные значения коэффициентов aj (факторных нагрузок) и как их вычислить? Для упрощения объяснения на первых порах придется несколько пожертвовать строгостью понятий. Сначала зададимся более простым вопросом – как определить долю участия некоего внешнего фактора в каких-либо двух изучаемых признаках (например, масса и размеры особи)? Если некий фактор будет действовать на оба признака одновременно, это значит, что изменения значений вариант от объекта к объекту будут происходить более или менее синхронно, сопряженно. Поскольку известно, что сопряженное варьирование двух признаков лучше всего оценивать с помощью корреляционного анализа, значит, коэффициент корреляции и покажет, чтó в варьировании двух признаков есть общего и какова степень этой общности. Корреляция на уровне r = 1 свидетельствует о том, что оба изучаемых признака абсолютно детерминированы друг другом или единственной внешней причиной. Говоря упрощенно, коэффициент корреляции r = 0.5 свидетельствует, что примерно половинная доля значений каждой из вариант обоих признаков определяется действием некоего общего фактора, а другие "половинки значений" сформированы под влиянием иных обстоятельств. Такой уровень корреляции как раз характерен для связи вес – размеры особи. Любой коэффициент корреляции будет отражать то общее, что есть между каждой парой изучаемых признаков, что заставляет их сопряженно изменяться от варианты к варианте. Коэффициенты в уравнениях главных компонент – это по существу и есть коэффициенты корреляции между признаками, они названы факторными нагрузками (отличия между коэффициентами корреляции и факторными нагрузками показаны ниже). Это удачное название показывает, во-первых, какой эффект данный l-й фактор оказал на данный j-й исходный признак, а также, во-вторых, какой вклад вносит данный признак в значение данной главной компоненты. Итак, факторные нагрузки есть аналоги коэффициентов корреляции между признаками (например, между первым признаком и всеми остальными, r1i); это позволяет записать примерную формулу: .
Ви переглядаєте статтю (реферат): «Факторные нагрузки» з дисципліни «Введення в кількісну біологію»