ДИПЛОМНІ КУРСОВІ РЕФЕРАТИ


ИЦ OSVITA-PLAZA

Реферати статті публікації

Пошук по сайту

 

Пошук по сайту

Головна » Реферати та статті » Товарознавство » Товарознавство сировини і матеріалів

Легкие металлы
К легким относятся металлы, плотность которых менее 4500 кг/м3. К наиболее широко применяемым легким металлам относятся алюминий, магний и титан.
Алюминий — серебристо-белый с несколько тусклой, покрытой пленкой окиси поверхностью металл. Его плотность 2700 кг/м3, температура плавления 660°C. Основными свойствами алюминия является легкость, пластичность, высокая электро- и теплопроводность, морозостойкость, коррозионная и химическая стойкость (устойчив против действия органических и азотной кислоты), хорошая свариваемость и обработка прокаткой, ковкой и волочением.
Алюминий — самый распространенный в земной коре металл. Однако из-за высокой химической активности в свободном состоянии в природе не встречается, а сосредоточен в бокситах, нефелинах, каолинах, алунитах и др. Наиболее ценная руда, содержащая до 50 % окиси алюминия,— бокситы. Полупродукт химической переработки алюминиевых руд — глинозем. Из него посредством электролиза получают металл.
Технический алюминий выпускается в чушках. В зависимости от химической чистоты различают следующие марки алюминия:
особой чистоты — А999 (примесей не более 0,001 %);
высокой чистоты — А995, А99, А97, А95 (примесей 0,005—0,05%);
технической чистоты — А85, А8, А7, А6, А5, АО, AE (примесей 0,15—1,0%).
Алюминий особой чистоты применяется в полупроводниковой и ядерной технике, высокой чистоты — для изготовления электрических конденсаторов, химической аппаратуры, технической чистоты — для изготовления кабельных изделий, проката, посуды, алюминиевого порошка и пудры, а также сплавов.
Как конструкционный материал алюминий в основном используется в виде сплавов. Это объясняется его невысокими механическими свойствами, труднообрабатываемостью резаньем, а также значительной линейной усадкой. Основными компонентами алюминиевых сплавов являются марганец, медь, кремний, магний, цинк, титан, хром и др.
Алюминиевые сплавы подразделяются на деформируемые (для изготовления листов, лент, труб, профилей и др.), литейные (для получения отливок), припои (для пайки алюминиевых сплавов) и подшипниковые.
Деформируемые алюминиевые сплавы обладают высокой пластичностью, вследствие чего легко поддаются обработке давлением, хорошо свариваются, устойчивы против коррозии. В зависимости от способности упрочняться термической обработкой они подразделяются на сплавы не упрочняемые и упрочняемые термообработкой (закалкой, старением, отжигом).
К сплавам, не упрочняемым термообработкой, относятся технический алюминий (АД0 и АД1), а также сплавы алюминия с магнием (магналии) или марганцем (АМг2, АМг3, АМг5, АМг6, АМц). Они упрочняются только холодным деформированием и применяются для сварных и клепаных деталей конструкций, эксплуатируемых при сравнительно небольших нагрузках и в коррозионно-активных средах. К сплавам, упрочняемым термообработкой, относятся дуралюмины, авиали, высокопрочные, ковочные и жаропрочные.
Дуралюмины — это сплавы алюминия с медью, магнием и марганцем Они выпускаются марок Д1, Д16п; Д18п, ВД17, Д19, В65 и применяются для изготовления деталей средней и повышенной прочности, подвергающихся переменным нагрузкам (детали самолетов, автомобилей, строительные конструкции и др.).
Авиали — сплавы алюминия с магнием и кремнием Они выпускаются марок AB, АД31, АД33, АД35 и применяются для изготовления деталей средней прочности, а также деталей, подвергающихся гибкой деформации как в холодном, так и в горячем состоянии (лопастей, винтов вертолетов, деталей двигателей, переборок судов, корпусов электромоторов, трубопроводов и др.).
Высокопрочные — это сплавы, состоящие из алюминия, цинка, магния, меди, марганца и хрома. Они выпускаются марок В92, В93, В94, В95, В96, ВАД23. Их недостаток — пониженная коррозионная стойкость.
Ковочные сплавы отличаются высокой пластичностью при температурах 380—450°C и поэтому применяются для изготовления штамповок и поковок сложной формы, средней и повышенной прочности, невысокой коррозионной стойкости. К ним относятся сплавы марок АК6, АК8.
Жаропрочные сплавы применяются для изготовления деталей, работающих при температуре до 300°C (головки блока цилиндров, поршни, детали компрессоров и турбореактивных двигателей, обшивка сверхзвуковых самолетов и др.). К ним относятся сплавы марок АК2, АК4, АК4-1, Д20 и Д21.
Литейные алюминиевые сплавы обладают высокой жидкотекучестью, небольшой усадкой, хорошими механическими свойствами и сопротивляемостью коррозии, что достигается введением в их состав большего, по сравнению с деформируемыми сплавами, количества легирующих элементов.
В зависимости от основных компонентов литейные алюминиевые сплавы выпускаются пяти групп, в том числе сплавы на основе алюминия и магния (АЛ8, АЛ13, АЛ22, АЛ23, АЛ27, АЛ29), алюминия и кремния (АЛ2, АЛ4, АЛ4В, АЛ7, АЛ78, АЛ9, АЛ9В), алюминия и меди (АЛ7, АЛ7В, АЛ 19), алюминия, кремния и меди (АЛ3, АЛ5, АЛ6, АЛ10В, АЛ4М, АЛ32 и др.) и многокомпонентные (АЛ1, АЛ 16В, АЛ17В, АЛ18В, АЛ20, АЛ21, АЛ24, АЛ25, АЛ26, АЛ30).
Наиболее распространенными литейными алюминиевыми сплавами являются силумины (сплавы на основе алюминия и кремния).
Для улучшения характеристик литейных алюминиевых сплавов производят их рафинирование (обработку смесью хлористых и фтористых солей калия и натрия или нейтральными газами (азотом, хлором, аргоном) с целью снижения содержания газов и неметаллических примесей) или модифицирование (обработку смесью фтористых и хлористых солей натрия с целью улучшения структуры силуминов и повышения их механических и литейных свойств).
Подшипниковые алюминиевые сплавы выпускаются марок А03—1, А09—2, А020—1 и др.
В маркировке алюминиевых сплавов буквами обозначаются компоненты (А — алюминий, К — кремний, Мц — марганец, Mг — магний), назначение (Д — деформируемые, Л — литейные) или свойства (В — высокопрочный, M — мягкий отожженный, Π — полунагартованный, H — нагартованный). Буквой Д обозначаются также дуралюмины. Цифры, следующие за буквами маркировки, обозначают или порядковый номер сплава, или процентное содержание соответствующего элемента. У высокопрочных сплавов на первом месте цифровой маркировки проставляется цифра 9.
Магний — серебристо-белый, покрытый окисной пленкой, металл плотностью 1740 кг/м3, температурой плавления 651°C. Основными свойствами магния являются малая плотность (один из самых легких металлов), хорошая обрабатываемость резаньем, стойкость к действию керосина, бензина и минеральных масел, однако он не стоек в водных растворах солей, кроме фтористых, и растворяется во многих кислотах. Магний немагнитен, имеет невысокие литейные и упругие свойства, корродирует во влажном воздухе. Порошкообразный магний или магниевая лента легко загорается от спички и горит белым пламенем.
В природе магний встречается в виде карбонатов, силикатов, хлоридов и сульфатов. Для его получения используют магнезит, доломит, карналлит, бишофит и отходы некоторых производств.
Магний выпускается марок Мг96 (не менее 99,96 % Mg), Мг95 (не менее 99,95% Mg) и Мг90 (не менее 99,90 % Mg) в виде чушек массой до 8 кг. Он примениется в качестве компонента сверхлегких и жаропрочных сплавов, высокопрочного чугуна, в химической промышленности и пиротехнике.
Магниевые сплавы представляют собой соединения магния с алюминием, цинком, марганцем и другими металлами. Они выпускаются литейные (МЛ2, МЛ15, МЛ19) и деформируемые (MAl, МА2, МА8 и др.). Цифра в маркировке обозначает порядковый номер, зависящий от химического состава.
Титан — металл серебристого цвета с голубоватым отливом плотностью 4505 кг/м3, температурой плавления 1668°C. Он отличается высокими прочностными свойствами (при температурах до 400°C), коррозионной устойчивостью, в том числе и во многих агрессивных средах, малой тепло- и электропроводностью, немагнитен. Механические свойства титана снижаются при нагреве до температур свыше 400°C, а при температуре 540°C он становится хрупким.
Исходным сырьем для производства титана является ильменит, рутил, сфен или титанит, перовскит и др.
Технический титан выпускается марок BT1-00 (99,53% Ti), BT1-0 (99,48% Ti) i BT1-1 (99,44% Ti). Чем меньше примесей, тем ниже прочность, но выше пластичность Технический титан хорошо обрабатывается давлением, сваривается (в среде аргона), однако его обработка резаньем затруднена.
Для повышения механических свойств и коррозионной стойкости титан легируют алюминием, молибденом, ванадием, марганцем, хромом, оловом, ниобием и др. Получаемые сплавы по прочности подразделяются на повышенной пластичности, невысокой и средней прочности и высокопрочные, а по назначению — на литейные (BT1Л, ВТ5Л, ВТ6Л и др.) и деформируемые (от 4—0, ВТ5—1, ВТ8, ВТ9, ВТ22 и др.) Цифры в маркировке показывают среднее процентное содержание компонентов сплава.
Титановые сплавы применяются в химическом машиностроении (колонны, башни, адсорберы, фильтры, насосы, теплообменники, работающие в среде хлора и его растворов, в азотной кислоте), самолетостроении (обшивка самолетов, детали двигателя), ракетной технике, судостроении, тяжелом и энергетическом машиностроении, для изготовления бытовых приборов и др.

Ви переглядаєте статтю (реферат): «Легкие металлы» з дисципліни «Товарознавство сировини і матеріалів»

Заказать диплом курсовую реферат
Реферати та публікації на інші теми: Відмінність між балансовим прибутком і грошовим потоком
Аудит визнання, збереження і технічного стану необоротних активів
Основні поняття електронної пошти, списки розсилки, телеконференц...
Аудит касових операцій. Мета, завдання, джерела аудиту
Аудит пайового капіталу


Категорія: Товарознавство сировини і матеріалів | Додав: koljan (29.09.2012)
Переглядів: 2266 | Рейтинг: 4.0/1
Всього коментарів: 0
Додавати коментарі можуть лише зареєстровані користувачі.
[ Реєстрація | Вхід ]

Онлайн замовлення

Заказать диплом курсовую реферат

Інші проекти




Діяльність здійснюється на основі свідоцтва про держреєстрацію ФОП