ДИПЛОМНІ КУРСОВІ РЕФЕРАТИ


ИЦ OSVITA-PLAZA

Реферати статті публікації

Пошук по сайту

 

Пошук по сайту

Головна » Реферати та статті » Статистика » Статистика

Обоснование численности выборки
Как видели выше, размер ошибки выборки прежде всего зависит от численности выборочной совокупности n. Из соответствующей формулы видели, что средняя ошибка выборки обратно пропорциональна √ n, т.е. например, при увеличении численности выборки в 4 раза ее ошибка уменьшается вдвое.
Увеличение численности выборки, следовательно, можно довести ее ошибку до каких угодно малых размеров. Само собой разумеется, что при доведении n до размеров N ошибка выборки .
Рассматривая такую гипотезу следует иметь в виду, что выборочная характеристика нередко получается при разрушении обследованных образцов (например, при проверке качества товара). Отсюда возникает проблема обоснования минимальной нормы отбора, но репрецентативного по результатам проверки. Это согласуется с спецификой (сущностью) выборочного наблюдения: получение необходимой информации с минимальными затратами времени и труда.
Поэтому вопрос об обосновании оптимальной численности выборки имеет важное практическое значение.
Повышение объема выборки ведет к увеличению объема статистической работы, вызывает дополнительные затраты труда и материальных и денежных средств. Однако всегда надо помнить и обратное: если в выборку взять недостаточное число образцов, то результаты статистического исследования могут содержать большие погрешности.
Определение необходимой численности выборки основывается на формуле предельной ошибки выборки:
Рассмотрим формулу

.

Решим это равенство относительно n

.

Отсюда необходимая численность выборки при расчете средней величины количественного признака ( ) выразится так:

.

Аналогично для доли альтернативного признака будем иметь.

и отсюда .

Для повторного отбора соответственно получим:
А) для доли альтернативного признака

;

Б) для средней величины количественного признака

.

Например, пусть исходя, из требований ГОСТа необходимо установить оптимальный объем выборки из партии нарезных батонов (2000 шт), чтобы с вероятностью, 0997 предельная ошибка не превышала 3% веса 500 граммового батона. По условию задачи г.
Определить заданную ГОСТом предельную величину ошибки выборки (в граммах) г.
Подставляя это значение в последнюю формулу, имеем штук.
Рассмотрим более подробно вывод формулы для n
а) для повторной схемы отбора возведем в квадрат обе части равенства и получим:
Теперь обе части равенства умножим на n. Имеем: .
Отсюда .
б) для бесповоротной схемы отбора
;


Пример на определение численности выборки

В ВУЗе в зимнюю сессию экзамен по дисциплине «Статистика» сдавали 500 студентов. Нужно определить размер выборки при случайном бесповторном отборе для изучения успеваемости по этой дисциплине, чтобы с вероятностью 0,954 (t=2) предельная ошибка выборки доли студентов, имеющих неудовлетворительную оценку, не превышала 5%, если процент неуспевающих по этому предмету обычно не превышала 10%.

Решение: При повторном отборе имеем:



Г) при бесповторном отборе:

Ви переглядаєте статтю (реферат): «Обоснование численности выборки» з дисципліни «Статистика»

Заказать диплом курсовую реферат
Реферати та публікації на інші теми: Задача о двух яйцах
Індивідуальні та інституційні інвестори
Что значит «преодолеть инерцию»
ЗМІСТ ТА МЕТА МАРКЕТИНГОВОЇ ПРОДУКТОВОЇ ТА ТЕХНОЛОГІЧНОЇ ІННОВАЦІ...
Системи передачі даних


Категорія: Статистика | Додав: koljan (27.09.2012)
Переглядів: 2395 | Рейтинг: 0.0/0
Всього коментарів: 0
Додавати коментарі можуть лише зареєстровані користувачі.
[ Реєстрація | Вхід ]

Онлайн замовлення

Заказать диплом курсовую реферат

Інші проекти




Діяльність здійснюється на основі свідоцтва про держреєстрацію ФОП