Анализ рядов динамики начинается с определения того, как именно изменяются уровни ряда (увеличиваются, уменьшаются или остаются неизменными) в абсолютном и относительном выражении. Чтобы проследить за направлением и размером изменений уровней во времени, для рядов динамики рассчитывают показатели изменения уровней ряда динамики: абсолютное изменение (абсолютный прирост); относительное изменение (темп роста или индекс динамики); темп изменения (темп прироста). Все эти показатели могут определяться базисным способом, когда уровень данного периода сравнивается с первым (базисным) периодом, либо цепным способом – когда сравниваются два уровня соседних периодов. Абсолютное изменение (абсолютный прирост) уровней рассчитывается как разность между двумя уровнями ряда по формуле (74) – для базисного способа сравнения или по формуле (75) – для цепного. Оно показывает, на сколько (в единицах показателей ряда) уровень одного (i-того) периода больше или меньше уровня какого-либо предшествующего периода, и, следовательно, может иметь знак «+» (при увеличении уровней) или «–» (при уменьшении уровней). ; (74 ) . (75 ) В табл. 28 в столбце 3 рассчитаны базисные абсолютные изменения по формуле (74) , а в столбце 4 – цепные абсолютные изменения по формуле (75) . Таблица 28 . Анализ динамики ВО России Год y , % ,% 2000 149,9
Между базисными и цепными абсолютными изменениями существует взаимосвязь: сумма цепных абсолютных изменений равна последнему базисному изменению, то есть . (76 ) В нашем примере про ВО подтверждается правильность расчета абсолютных изменений по формуле (76) : = 318,5 рассчитана в итоговой строке 4-го столбца, а = 318,5 – в предпоследней строке 3-го столбца табл. 28 . Относительное изменение (темп роста или индекс динамики) уровней рассчитывается как отношение (деление) двух уровней ряда по формуле (77) – для базисного способа сравнения или по формуле (78) – для цепного. ; (77 ) . (78 ) Относительное изменение показывает во сколько раз уровень данного периода больше уровня какого-либо предшествующего периода (при >1) или какую его часть составляет (при <1). Относительное изменение может выражаться в виде коэффициентов, то есть простого кратного отношения (если база сравнения принимается за единицу), и в процентах (если база сравнения принимается за 100 единиц) путем домножения относительного изменения на 100%. В табл. 28 в столбце 5 рассчитаны базисные относительные изменения по формуле (77) , а в столбце 6 – цепные относительные изменения по формуле (78) . Между базисными и цепными относительными изменениями существует взаимосвязь: произведение цепных относительных изменений равно последнему базисному изменению, то есть . (79 ) В нашем примере про ВО подтверждается правильность расчета относительных изменений по формуле (79) : = 1,038*1,082*1,260*1,324*1,315*1,270 = 3,125 рассчитано по данным 6-го столбца, а = 3,125 – в предпоследней строке 5-го столбца табл. 28 . Темп изменения (темп прироста) уровней – относительный показатель, показывающий, на сколько процентов данный уровень больше (или меньше) другого, принимаемого за базу сравнения. Он рассчитывается путем вычитания из относительного изменения 100%, то есть по формуле (80) : , (80 ) или как процентное отношение абсолютного изменения к тому уровню, по сравнению с которым рассчитано абсолютное изменение (базисный уровень), то есть по формуле (81) : . (81 ) В табл. 28 в столбце 7 рассчитаны базисные темпы изменения ВО по формуле (80) , а в столбце 8 – цепные темпы изменения по формуле (81) . Все расчеты в табл. 28 свидетельствуют о ежегодном росте ВО России за период 2000-2006 гг.
Ви переглядаєте статтю (реферат): «Показатели изменения уровней ряда динамики» з дисципліни «Теорія статистики»