Эконометрика — это дисциплина, объединяющая совокупность теоретических результатов, методов и приемов, позволяющих на базе экономической теории, экономической статистики и математико-статистического инструментария получать количественное выражение качественных закономерностей. Курс эконометрики призван научить различным способам выражения связей и закономерностей через эконометрические модели и методы проверки их адекватности, основанные на данных наблюдений. От математико-статистического эконометрический подход отличается тем вниманием, которое уделяется в нем вопросу соответствия выбранной модели изучаемому объекту, рассмотрению причин, приводящих к необходимости пересмотра модели на основе более точной системы представлений. Эконометрика занимается, по существу, статистическими выводами, т.е. использованием выборочной информации для получения некоторого представления о свойствах генеральной совокупности. Наиболее распространенными эконометрическими моделями являются производственные функции и модели, описываемые системой одновременных уравнений. Кратко остановимся на них.
Производственные функции
Производственная функция представляет собой математическую модель, характеризующую зависимость объема выпускаемой продукции от объема трудовых и материальных затрат. Модель может быть построена как для отдельной фирмы и отрасли, так и для всей национальной экономики. Рассмотрим производственную функцию, включающую два фактора производства — затраты капитала К и трудовые затраты L, определяющие объем выпуска Q. Тогда можно записать
Определенного уровня выпуска можно достигнуть с помощью различного сочетания капитальных и трудовых затрат. Кривые, описываемые условиями j(K, L) = const., называются изо квантами. Обычно предполагается, что по мере роста значений одной из независимых переменных предельная норма замещения данного фактора производства уменьшается. Поэтому при сохранении постоянного объема производства экономия одного вида затрат, связанная с увеличением затрат другого фактора, постепенно уменьшается. На примере производственной функции Кобба — Дугласа рассмотрим основные выводы, которые можно получить исходя из предложений о том или ином виде производственной функции. Производственная функция Кобба — Дугласа, включающая два фактора производства, имеет вид
(53.52)
где А, α, β — параметры модели. Величина А зависит от единиц измерения Q, К и L, а также от эффективности производственного процесса. При фиксированных значениях К и L более высокое значение имеет та функция Q, которая характеризуется большей величиной параметра А, следовательно, и производственный процесс, описываемый такой функцией, более эффективен. Описываемая производственная функция однозначна и непрерывна (при положительных К и L). Параметры α и β называют коэффициентами эластичности. Они показывают, на какую величину в среднем изменится Q, если α или β увеличить на 1%. Рассмотрим поведение функции Q при изменении масштабов производства. Предположим, что затраты каждого фактора производства увеличились в с раз. Тогда новое значение функции будет определяться следующим образом:
(53.53)
При этом, если α + β = 1, то уровень эффективности не зависит от масштабов производства. Если α + β < 1, то средние издержки, рассчитанные на единицу продукции, растут, а при α + β > 1 — убывают по мере расширения масштабов производства. Следует отметить, что эти свойства не зависят от численных значений К, L производственной функции. Для определения параметров и вида производственной функции необходимо провести дополнительные наблюдения. Как правило, пользуются двумя видами данных — динамическими (временными) рядами и данными одновременных наблюдений (пространственной информацией). Динамические ряды экономических показателей характеризуют поведение одной и той же фирмы во времени, тогда как данные второго вида обычно относятся к одному и тому же моменту, но к различным фирмам. В случаях когда исследователь располагает временным рядом, например годовыми данными, характеризующими деятельность одной и той же фирмы, возникают трудности, с которыми не пришлось бы столкнуться при работе с пространственными данными. Так, относительные цены со временем становятся иными, а следовательно, меняется и оптимальное сочетание затрат отдельных факторов производства. Кроме того, с течением времени изменяется и уровень административного управления. Однако основные проблемы при использовании временных рядов порождаются последствиями технического прогресса, в результате которого меняются нормы затрат производственных факторов, соотношения, в которых они могут замещать друг друга, и параметры эффективности. Вследствие этого с течением времени могут меняться не только параметры, но и формы производственной функции. Поправка на технический прогресс может быть введена с помощью некоторого временного тренда, включаемого в состав производственной функции. Тогда
Производственная функция Кобба — Дугласа с учетом технического прогресса имеет вид
(53.54)
В этом выражении параметр θ, с помощью которого характеризуется технический прогресс, показывает, что объем выпускаемой продукции ежегодно увеличивается на θ процентов независимо от изменений в затратах производственных факторов и, в частности, от размера новых инвестиций. Такая форма технического прогресса, не связанная с какими-либо затратами труда или капитала, называется «нематеризованным техническим прогрессом». Однако подобный подход не вполне реалистичен, так как новые открытия не могут повлиять на функционирование старых машин, а расширение объема производства возможно только посредством новых инвестиций. При другом подходе к учету технического прогресса для каждой «возрастной группы» капитала строят свою производственную функцию. В этом случае функция Кобба — Дугласа будет иметь вид
(53.55)
где Qt(v) — объем продукции, произведенной за период t на оборудовании, введенном в строй в период v; Lt(v) — трудовые затраты в период t на обслуживание оборудования, введенного в строй в период v, и Кt(v) — основной капитал, введенный в строй в период v и использованный в период t. Параметр v в такой производственной функции отражает состояние технического прогресса. Затем для периода t строится агрегированная производственная функция, представляющая собой зависимость совокупного объема выпускаемой продукции Qt от общих затрат труда Lt, и капитала Кt на момент t. При использовании для построения производственной функции пространственной информации, т.е. данных о нескольких фирмах, соответствующих одному и тому же моменту времени, возникают проблемы другого рода. Так как результаты наблюдений относятся к разным фирмам, то при их использовании предполагается, что поведение всех фирм может быть описано с помощью одной и той же функции. Для успешной экономической интерпретации полученной модели желательно, чтобы все эти фирмы принадлежали одной и той же отрасли. Кроме того, считается, что они располагают примерно одинаковыми производственными возможностями и уровнями административного управления. Рассмотренные выше производственные функции носили детерминированный характер и не учитывали влияния случайных возмущений, присущих каждому экономическому явлению. Поэтому в каждое уравнение, параметры которого предстоит оценить, необходимо ввести и случайную переменную е, которая будет отражать воздействие на процесс производства всех тех факторов, которые не вошли в состав производственной функции в явном виде. Таким образом, в общем виде производственную функцию Кобба — Дугласа можно представить как
(53.56)
Мы получили степенную регрессионную модель, оценки параметров которой А, α и β можно найти методом наименьших квадратов, лишь прибегнув предварительно к логарифмическому преобразованию. Тогда для i-го наблюдения имеем
(53.57)
где Qi, Кi и Li — соответственно объемы выпуска, капитальных и трудовых затрат для i-го наблюдения (i = 1, 2, ..., п), а п — объем выборки, т.е. число наблюдений, используемых для получения оценок ln , и — параметров производственной функции. Относительно εi обычно предполагается, что они взаимно независимы между собой и εi ( N(0, σ ). Исходя из априорных соображений значения α и β должны удовлетворять условиям 0 < α < 1 и 0 < β < 1. Если предположить, что с изменением масштабов производства уровень эффективности остается постоянным, то, приняв, что β = 1 — α, имеем
(53.58) или
и
(53.59)
Прибегнув к такой форме выражения производственной функции, можно устранить влияние мультиколлинеарности между ln К и ln L. В качестве примера приведем полученную на основе данных о 180 предприятиях, выпускающих верхнюю одежду, модель Кобба — Дугласа:
В скобках указаны значения t-критерия для коэффициентов регрессии уравнения. При этом множественный коэффициент детерминации и расчетное значение статистики F-критерия, соответственно равные r2 = 0,46 и F = 12,7, указывают на значимость полученного уравнения. Оценки параметров α и β функции Кобба — Дугласа равны = 0,19 и = 0,95 (1 - 0, 19 + 0,14). Так как = 1,14 > 1, то можно предположить, что происходит некоторое повышение эффективности по мере расширения масштаба производства. Параметры модели показывают также, что при увеличении капитала К на 1% объем выпуска повышается в среднем на 0,19%, а при увеличении трудовых затрат L на 1% объем выпуска возрастает в среднем на 0,95%.
Ви переглядаєте статтю (реферат): «Основы эконометрики» з дисципліни «Курс соціально-економічної статистики»