Структурное моделирование —сложный современный метод, требующий и больших объемов выборок, и специальной квалификации исследователя, и наличия соответствующих компьютерных программ. Детальное изложение его не входит в задачи данного учебника, мы даем краткую характеристику его возможностей, чтобы читатель, столкнувшись в литературе с этим типом ана- лиза, смог адекватно понять его смысл. Статистические методы моделирования с помощью линейных структур- ных уравнений (МЛСУ)**, описывающих латентные переменные, были разра- ботаны на основе приемов статистического анализа множественных пере- менных, используемых биологами, экономистами, психологами и социолога- ми, МЛСУ предполагает формулирование набора гипотез о влиянии одних переменных (независимых) на другие (зависимые) переменные. Соответствие подобного набора гипотез, т.е. теоретической модели, и реальных данных, собранных при работе с конкретной выборкой, т.е. эмпирической модели, формализуется с помощью статистического алгоритма, оценивающего сте- пень их согласованности (меру соответствия).
* Полное описание спецификации МПМ в рамках количественной генети- ки выходит за пределы данного учебника. Подробное изложение этого метода да- ется в руководствах Лоэлина [320J, а также Нила и Кардона 1342]. На русском языке пример применения МПМ в рамках психогенетики приведен в работе Е.А. Григоренко и М. ЛаБуды 144]. ** История возникновения и этапы детальной разработки МЛСУ описаны Бентлером [189; 190], а в работах Боллена [198] и Бентлера и его коллег [191] содержится современное техническое описание МЛСУ.
208 МЛСУ особенно полезно при статистическом анализе большого количе- ства переменных, интеркорреляции которых известны. Задачами его являют- ся: суммирование этих переменных, определение отношений между ними, оцен- ка качества измерительных инструментов, контроль ошибки измерения (как для измеряемых, так и для латентных переменных) и нахождение соответ- ствия между измеряемыми и латентными структурами. Правомерно будет сказать, что в ситуациях, когда набор переменных неточно измеряет латент- ную структуру, являющуюся предметом исследования, т.е. практически в лю- бом случае, когда больше чем одна наблюдаемая переменная используется для представления латентной структуры, МЛСУ с латентными переменными следует применять как наиболее адекватный метод статистического анали- за. Учитывая, что в психологии большинство латентных структур измеряется именно посредством не одной, а нескольких переменных и не может быть представлено без ошибки измерения, возможность и необходимость приме- нения МЛСУ в этой области знаний становится очевидной. Моделирование с помощью структурных уравнений представляет собой метод, родственный методу систем регрессионных уравнений, который ис- пользуется при формулировании, детализации и тестировании теории или гипотезы. Структурные уравнения соотносят зависимые переменные и на- бор детерминирующих (независимых) переменных, которые в свою очередь могут выступать в роли зависимых переменных в других уравнениях. Подоб- ные линейные уравнения в совокупности с уравнениями, детализирующими компоненты дисперсии и ковариации независимых переменных, составляют структурную модель. Составление и запись уравнений, детализирующих ком- поненты дисперсии и ковариации независимых переменных, осуществляют- ся с помощью матричной алгебры. Статистической основой МЛСУ является асимптотическая теория, подра- зумевающая, что оценка и тестирование моделей осуществляются при нали- чии относительно больших по численности выборок испытуемых. Использо- вание МЛСУ требует больших затрат компьютерного времени, поэтому пользо- ватели при тестировании моделей предпочитают использовать стандартные статистические пакеты типа LISREL [295] и EQS [189]. Эти пакеты, несмотря на различия в деталях, основаны на одних и тех же общих математических и статистических подходах, применяемых к анализу систем линейных структур- ных уравнений. Основополагающая математическая модель [189] относится к классу ковариационных структурных моделей, включающих как множествен- ную регрессию, анализ путей, одновременный анализ уравнений, конфирма- торный факторный анализ, так и анализ структурных отношений между латен- тными переменными. Согласно модели Бентлера-Викса, параметры любой структурной модели могут быть представлены в виде регрессионных коэф- фициентов, дисперсий и ковариации независимых переменных. Статистичес- кая теория позволяет оценивать эти параметры с использованием мульти- факторной нормальной теории, а также более общих теорий — эллиптичес- кой и арбитрального распределения, основываясь на обобщенном методе наименьших квадратов или теории минимального χ-квадрата. * * * В данной главе мы рассмотрели несколько краеугольных понятий генетики количественных признаков. Ее центральным допущением является представление о том, что фенотипическая вариативность признака может быть представлена в виде независимо действующих
14-1432 209 генетической (аддитивной, доминантной и эпистатической) и средо- вой (общей и индивидуальной) составляющих и составляющей, опи- сывающей взаимодействия между генами и средой (ГС-корреляции и ГС-взаимодействия). На этом строятся существующие в количествен- ной генетике математические методы. Используя принцип разложе- ния фенотипической дисперсии, можно определить так называемый коэффициент наследуемости, который говорит о том, какой процент фенотипической дисперсии объясняется вариативностью генотипа в популяции, Коэффициент наследуемости может быть определен не- сколькими способами, каждый из которых имеет свои достоинства и недостатки, поэтому использование того или иного способа должно определяться задачами работы, типом и объемом эмпирического ма- териала. Одновременно генетико-математические методы позволяют надежно выделить доли дисперсии, определяемые различиями в об- щесемейной и индивидуальной среде. Надо лишь иметь в виду, что содержательный анализ любого средового компонента требует при- влечения собственно психологических знаний и иногда специального подбора экспериментальных групп.
Ви переглядаєте статтю (реферат): «СТРУКТУРНОЕ МОДЕЛИРОВАНИЕ» з дисципліни «Психогенетика»