ДИПЛОМНІ КУРСОВІ РЕФЕРАТИ


ИЦ OSVITA-PLAZA

Реферати статті публікації

Пошук по сайту

 

Пошук по сайту

Головна » Реферати та статті » Психологія » Поведінка тварин: психобіологія, етологія і еволюція

Механорецепторы и слух
Звук возникает вследствие ничтожных изменений давления, вызываемых источником колебаний в воздухе или в воде. Звуковые рецепторы в принципе представляют собой механорецепторы с быстрым восстановлением чувствительности, что делает их восприимчивыми к колебаниям.
У множества членистоногих описаны чувствительные к вибрации волоски и рецепторы в суставах конечностей. У падальных мух в некоторых суставах антенн рецепторы, называемые джонстоновыми органами, могут реагировать на колебания частотой до 500 Гц. У комаров орган
180

такого же типа сигнализирует о направлении звука. Гладыш Notonecta локализует добычу по волнам, распространяющимся на поверхности воды. Рецепторы, расположенные на его лапках, максимально чувствительны к колебаниям частотой 100-150 Гц. Пауки отличают живую добычу от мертвой по вибрации паутины. Некоторые позвоночные обладают механорецепторами, способными воспринимать колебания субстрата. Такие рецепторы найдены в коже змей и в суставах ног у кошек и уток (Prosser, 1973).
Слуховые системы животных, несмотря на разнообразие, имеют некоторые общие черты. Так, например, их периферическая часть преобразует звуковое давление в колебательное движение. Рецепторы превращают это движение в нервные импульсы, которые декодируются ЦНС. Один из самых простых типов периферических устройств известен у бабочек совок. У них имеются два «уха» (тимпанальных органа), каждое из которых состоит просто из тимпанальной мембраны по бокам груди и двух рецепторных клеток, погруженных в полоску соединительной ткани (рис. 12.4). Это поразительно простое «ухо» позволяет бабочкам слышать ультразвуковые сигналы охотящихся летучих мышей. В серии изящных опытов Редер (Roeder, 1963, 1970) показал, как это происходит.
Один рецептор, называемый клеткой A1 , чувствителен к слабым звукам и реагирует на сигналы летучих мышей на расстоянии около 30 м, т. е. слишком далеким для того, чтобы мышь обнаружила бабочку. Частота импульсов, идущих от клетки A1 , пропорциональна силе звука, и поэтому бабочка может определить, приближается ли летучая мышь. Сравнивая время прихода и интенсивность стимула в обоих органах слуха, бабочка узнает о направлении полета мыши. Разница возникает потому, что тело бабочки заслоняет звук от одного «уха» больше, чем от другого. Может быть также определена относительная высота полета летучей мыши: когда она выше насекомого, звук, приходящий к тимпанальным органам, ритмически прерывается взмахами крыльев бабочки; когда мышь находится ниже бабочки, этого не происходит.

Рис. 12.4. Тимпанальный орган совки. Колебания тимпанальной мембраны воспринимаются сенсорными нейронами А1 и А2.
Клетки А1 заранее предупреждают бабочку о приближении летучей мыши и могут позволить ей улететь до того, как мышь ее обнаружит. Удаляясь по прямой, бабочка становится наименьшей мишенью, потому что ее крылья обращены к мыши краями, а не плоскостью; она добивается этого, просто разворачиваясь так, чтобы уравнять звук, достигающий обоих «ушей». Но если летучая мышь обнаруживает бабочку, та не может спастись от нее, просто улетев, так как летучая мышь движется гораздо быстрее. Поэтому бабочка уклоняется от хищника, когда он приблизится к ней на 2-3 м (рис. 12.5).
Клетка А2 генерирует нервные импульсы только в ответ на громкие звуки. Она начинает реагировать, когда летучая мышь близко, и, вероятно, ее импульсы прерывают действие механизмов ЦНС, управляющих полетом. В результате он становится беспорядочным, и бабочка устремляется к земле. Наблюдения показывают, что с помощью такого уклоняющегося движения бабочки спасаются от летучих мышей как раз в тот момент, когда они приближаются на расстояние непосредственного нападения. Таким образом, ис-
181



Рис. 12.5. А. Фотография, показывающая траекторию полета бабочки, спасающейся от летучей мыши (красного кожана). Б. Фотография, показывающая траекторию полета красного кожана, ловящего бабочку. (Фотография F. Webster.)
следования Редером (Roeder, 1963, 1970) слуха у бабочек служат прекрасной иллюстрацией не только механизмов работы простого уха, но и того, что сенсорный аппарат животного тонко адаптирован к его экологии.
Звук обладает многими свойствами, на которые животное может реагировать. Когда он проходит через среду, ее частицы движутся взад и вперед, создавая осциллирующие волны давления. Величина (амплитуда) этих волн определяет интенсивность (громкость) воспринимаемого звука. Скорость его зависит от плотности среды распространения и не зависит от интенсивности. В воздухе звук распространяется со скоростью около 340 м в секунду, причем в горячем воздухе - быстрее, чем в холодном. В воде его скорость приблизительно в четыре раза выше, чем в воздухе.
182

Если мы изобразим звук в форме волн, как на рис. 12.6, то расстояние между последовательными пиками, называемое периодом, обратно пропорционально частоте, т. е. числу пиков в единицу времени. Частота звука измеряется в герцах, или в циклах, в секунду. Простейший звук - чистый тон, единственная частота которого субъективно воспринимается как высота. Естественные звуки редко бывают чистыми тонами и состоят главным образом из ряда смешанных частот. Когда сложный звук разлагают на составляющие частоты, получают так называемый звуковой спектр. Орган слуха может быть чувствителен к широкому диапазону частот; например, тимпанальный орган саранчи реагирует на частоты от 1000 до 100 000 Гц. Когда слуховой рецептор воспринимает узкий частотный диапазон, говорят, что он «остро настроен».
Антеннальный рецептор (джонстонов орган) самца комара Aedes aegypti реагирует на колебания частотой от 150 до 550 Гц, что соответствует звуку, создаваемому крылом самки. Высокочастотный тон от крыла самца не воспринимается джонстоновым органом (Haskell, 1961).
В целом органы слуха позвоночных чувствительны к более широкой области звукового спектра, чем у беспозвоночных. Так, лишь очень немногие беспозвоночные (причем их существование еще строго не доказано) могут различать две частоты, если только не обладают двумя по-разному настроенными типами рецепторов (Haskell, 1961). Для позвоночных такое различение не составляет проблемы благодаря отчасти строению их уха, а отчасти анализирующей роли ЦНС.
У человека (рис. 12.7), подобно большинству млекопитающих, ухо разделено на три отдела: наружное, среднее и внутреннее ухо. Наружное ухо состоит из ушной раковины и слухового прохода, который отделяется от среднего уха барабанной перепонкой. Среднее ухо образовано полостью, лежащей за барабанной перепонкой и соединенной с глоткой через евстахиеву трубу - проход, который делает возможным выравнивание воздушного давления в наружном и среднем ухе. Пассажиры самолета иногда испытывают боль в ушах при резком изменении высоты во время подъема или приземления из-за разницы давления по обе стороны барабанной перепонки. Прохождение воздуха через евстахиеву трубу устраняет эту разницу, чему способствуют жевание, глотание или зевота. В среднем ухе находятся три маленькие косточки: молоточек, наковальня и стремечко, которые соединяют барабанную перепонку с другой перепопкой- овальным окном в стенке камеры среднего уха.
Внутреннее ухо представляет собой лабиринт взаимосвязанных наполненных жидкостью камер и каналов. Оно состоит из двух различных частей: вестибулярного аппарата, который ведает чувством равновесия, и улитки - спирально свернутой трубки, которая служит органом слуха. Внутри улитки проходят три канала: вестибулярная лестница, берущая начало у овального окна; барабанная лестница, которая начинается у круглого окна и другим своим концом соединяется с вестибулярной, и средняя лестница, расположенная между первыми двумя. Среднюю и барабанную лестницы разделяет основная (базилярная) мембрана, на которой находится кортиев орган. Этот орган образован рядами рецепторных клеток с сенсорными волосками на апикальных концах. Волоски упираются в студенистую покровную (текториальную) мембрану. Дендриты сенсорных нейронов заканчиваются на поверхности волосковых клеток, и когда колебания основной мембраны заставляют эти клетки колебаться, деформация волосков вызывает генераторные потенциалы, которые возбуждают сенсорные нервы.
Колебания воздуха улавливаются ушной раковиной и проходят по наружному слуховому проходу, заставляя барабанную перепонку колебаться с той же частотой. Эти колебания передаются через полость среднего уха по трем слуховым косточкам, образующим систему рычагов, которая уменьшает амплитуду колебаний, но увеличивает их силу. Кроме того, колебания крупной барабанной перепонки передаются на овальное окно гораздо меньших размеров; в результате звуковое давление на барабанную пере-
183


Рис. 12.6. Органы слуха разных типов отвечают на разные свойства звука. Органы, являющиеся детекторами частиц, обнаруженные у пчел, комаров и некоторых рыб, стимулируются молекулами воздуха, движущимися от области с высоким к области с низким давлением. Органы, реагирующие на разницу в давлении, свойственные млекопитающим, некоторым птицам, рыбам и насекомым, обладают замкнутой камерой с «эталонным» давлением и перепонкой, которая деформируется при изменениях давления в окружающей среде. Органы, реагирующие на градиент давления, имеющиеся у рептилий, амфибий, некоторых птиц, рыб и насекомых, измеряют разницу в давлении между двумя концами трубки посредством находящейся в трубке мембраны. Они максимально реактивны, когда ориентированы вдоль оси распро-
184



Рис. 12.7. Схематические изображения уха человека: вверху - общий вид; внизу слева - поперечный разрез улитки: внизу справа - детали кортиева органа.
понку усиливается на овальном окне приблизительно в 22 раза, что улучшает обнаружение слабых звуков.
Движение мембраны овального окна вызывает соответствующее движение жидкости в улитке. При прогибании мембраны внутрь улитки жидкость проталкивается из вестибулярной лестницы в барабанную, отчего мембрана круглого окна выгибается наружу, и давление в улитке снижается. За полный цикл жидкость движется сначала в одну, а затем в другую сторону. Эти движения в улитке происходят с частотой колебаний наружного воздуха. Они вызывают бегущую волну в основной мембране, и, отклоняясь вверх и вниз, она деформирует волосковые клетки, упирающиеся в покровную мембрану.
Эта деформация возбуждает сенсорные нейроны.
Точка максимальной амплитуды колебаний мембраны в улитке меняется с частотой звукового стимула. Еще в 1867 г. Гельмгольц, исходя из анатомических соображений, правильно постулировал, что высокочастотные волны фокусируются вблизи основания улитки, а низкочастотные оказывают максимальное действие у ее вершины. Современными представлениями о работе улитки мы обязаны инженеру связи Бекеши (Bekesy, 1952, 1960), получившему за свои исследования Нобелевскую премию. Он наблюдал за процессами внутри улитки, удалив из нее жидкость и заменив ее суспензией угля и распыленного алюминия. По отражению
185



Рис. 12.8. Длина волн электромагнитного спектра в метрах (вверху); видимая часть спектра в увеличенном масштабе (внизу).
вспышек яркого света от этой суспензии он смог наблюдать прохождение волны в основной мембране. Как показали его наблюдения, эта мембрана натянута сильнее у основания, что благоприятствует высокочастотным колебаниям, и слабее у вершины, что благоприятствует низким частотам. Таким образом, определенные частоты колеблют различные участки основной мембраны и каждый участок стимулирует особые рецепторы кортиева органа.
Синапсы нервных волокон, идущих от этих рецепторов, находятся в спиральном ганглии, а аксоны нейронов этого ядра образуют VIII черепномозговой нерв. Каждый из них сигнализирует об определенной частоте звука улитковому ядру головного мозга.
Не у всех позвоночных строение уха одинаково. Так, например, у рыб и китообразных (дельфинов и китов) нет наружного уха, а рыбы лишены также барабанной перепонки и среднего уха со слуховыми косточками. Поскольку ткани рыб имеют приблизительно ту же плотность, что и вода, колебания, приходящие к их голове, могут передаваться прямо к внутреннему уху. Впрочем, некоторые рыбы обладают другим механизмом, функционально аналогичным среднему уху: это наполненный газом плавательный пузырь, у которого может быть костная связь с внутренним ухом, значительно улучшающая слуховую способность. У амфибий и рептилий самой наружной частью уха является барабанная перепонка, но у птиц уже имеется внешний канал (слуховой проход), ведущий к ней от поверхности тела. У птиц от внутренней поверхности барабанной перепонки идет костный стерженек (columella), соединяющийся со стремечком. У амфибий и рептилий эти косточки составляют часть челюсти, хотя у некоторых видов они играют определенную слуховую роль.
Органы боковой линии у рыб и водных амфибий чувствительны к колебаниям, включая низкочастотные звуки; они состоят из видоизмененных волосковых сенсилл, которые реагируют на ток воды в канале боковой линии или на поверхности тела.

Ви переглядаєте статтю (реферат): «Механорецепторы и слух» з дисципліни «Поведінка тварин: психобіологія, етологія і еволюція»

Заказать диплом курсовую реферат
Реферати та публікації на інші теми: Проектний контроль
СУТЬ ТА ПРЕДМЕТ АУДИТУ, ЙОГО СФЕРА ДІЇ В ЗАРУБІЖНИХ КРАЇНАХ
Банки в ролі андеррайтерів
Аудит забезпечення збереження тварин
Сервіс WWW


Категорія: Поведінка тварин: психобіологія, етологія і еволюція | Додав: koljan (29.01.2012)
Переглядів: 781 | Рейтинг: 0.0/0
Всього коментарів: 0
Додавати коментарі можуть лише зареєстровані користувачі.
[ Реєстрація | Вхід ]

Онлайн замовлення

Заказать диплом курсовую реферат

Інші проекти




Діяльність здійснюється на основі свідоцтва про держреєстрацію ФОП