Пример простой многослойной сети приведен на рис. 3. Эта сеть имеет два входа (A, В), каждый из к-рых проецируется на два элемента (X, R). Элемент X, находящийся между событиями на входе и выходным элементом наз. скрытым элементом. Эта небольшая сеть содержит пять модифицируемых связей, а именно A-Х, A-R, В-Х, B-R и X-R.
Рис. 3. Конфигурация многослойной сети, подчиняющейся правилу исключающего ИЛИ. Многослойные сети сыграли решающую роль в разрешении вопросов репрезентации стимула и формирования понятий, вызывавших трудности у традиционных психол. теорий и однослойных сетевых моделей. В частности, многослойные сети обеспечивают базис для обучения произвольному отображению (arbitrary mapping) входных паттернов стимулов в выходные паттерны реакций. Ключевая проблема оказалась связанной с нелинейными отображениями. При таком отображении, желаемая реакция на определенное сочетание входов не является аддитивной функцией реакций на отдельные входы. Примером простейшего нелинейного отображения является правило исключающего ИЛИ. Правило исключающего ИЛИ требует реакции на каждый из двух входов, предъявляемых по отдельности, но не на их совместное появление. Напр., мн. люди обнаруживают следование правилу исключающего ИЛИ в своих вкусовых предпочтениях. Человек может с удовольствием есть лакрицу, но отказываться есть картофель с лакричной приправой. Если бы отдельные отображения стимул — реакция являлись строго аддитивными, картофель с лакричной приправой съедался бы с большим удовольствием. Вообще говоря, можно преобразовать нелинейную задачу в линейную, постулируя особый вход для совместного появления осн. стимульных входов. Однако, когда число осн. входов увеличивается, эта тактика приводит к бурному росту числа особых входов. Более общее решение заключается во введении механизма обучения, к-рый формирует специализированные кодировки совместных входов по мере возникновения такой необходимости. Многослойные сети обладают этой способностью. Коротко говоря, установление подходящих весов связей от стимульных входов к скрытым элементам создает блоки, специализированные для конкретной комбинации входов. Связи между скрытыми элементами и выходными элементами обеспечивают отображение этих специализированных блоков в соотв. выходные реакции. Небольшая сеть, показанная на рис. 3, имеет конфигурацию, позволяющую проиллюстрировать поведение согласно правилу исключающего ИЛИ. В этой конфигурации вход A сам по себе не может активизировать элемент X, т. к. вес связи А — X не превышает величины порога X, однако вход A может активизировать элемент R, т. к. его порог оказывается достаточно низким для того чтобы связь A — R оказалась эффективной. Точно так же, вход В может активизировать лишь узел R. Т. о., входы A и В могут каждый по отдельности активизировать выход этой сети. Однако, согласно правилу исключающего ИЛИ, взятые вместе входы А и В будут подавлять выход. Это происходит потому, что суммарный вес связей входов А и В будет активизировать элемент X, а этот элемент X имеет большую отрицательную связь с элементом R. Следовательно, совместное появление входов А и В аннулирует их индивидуальные положительные связи с элементом R.
Ви переглядаєте статтю (реферат): «Многослойные сети» з дисципліни «Психологічна енциклопедія»