ДИПЛОМНІ КУРСОВІ РЕФЕРАТИ


ИЦ OSVITA-PLAZA

Реферати статті публікації

Пошук по сайту

 

Пошук по сайту

Головна » Реферати та статті » Психологія » Психологічна енциклопедія

Общая значимость данных
При объединении результатов, полученных в независимых работах, оценивающих одинаково направленную конкретную гипотезу, в распоряжении исследователя имеется множество процедур, называемых сложными критериями. В этой статье мы ограничиваемся рассмотрением методов, разработанных Фишером, Вайнером и Стауффером с соавторами.
Известный под названием метода суммирования логарифмов (adding logs method), сложный критерий Фишера является одной из наиболее популярных и часто используемых процедур проверки гипотез и задается следующим уравнением:
χ2 = Σ — 2 ln p.
Эта процедура заключается в суммировании со знаком минус удвоенных натуральных логарифмов соответствующих значений р односторонних критериев, приведенных в анализируемых исслед. Получающаяся в результате стат., к-рая и положена в основу данного критерия, имеет χ2-распределение с числом степеней свободы (df), равным удвоенному числу исследований (N), включенных в анализ (т. е. df = 2N). Метод Фишера особенно эффективен, когда число анализируемых исслед. относительно невелико (не более 5). Хотя было доказано, что эта процедура яв-ся в большей степени асимптотически оптимальной, чем др. методы объединения, она обнаруживает довольно серьезный недостаток всякий раз, когда в двух исслед. приводятся одинаково значимые результаты противоположного характера. В этой ситуации метод Фишера дает допускающие двоякое толкование результаты, подтверждая значимость любого из исходов. Поэтому, когда проводится обзор всего нескольких исслед., рекомендуется не использовать эту процедуру механически. Но, вообще говоря, можно усомниться в пользе проведения М. в тех случаях, когда расходящиеся данные получены в таком ограниченном количестве исслед. Если число исслед. в к.-л. области мало, а полученные в них данные явно расходятся, то возникают вопросы не только в отношении уместности применения М. как метода обзора данных, но и в отношении того, указывают ли анализируемые публикации на сколько-нибудь жизнеспособную область исслед.
Сложный критерий Вайнера, называемый методом «суммирования значений t», имеет вид:
.
Основанная на выборочном распределении независимых статистик t, эта процедура заключается в вычислении нормированного отклонения (standard normal deviate), равного сумме значений t-критерия, деленной на корень квадратный из дисперсии t-распределения. Эти значения t-критерия или берутся прямо из включаемых в обзор публикаций, или, если в них приведены только значения р, получаются путем преобразования указанных р в t. Дисперсия t-распределения имеет приближенно нормальное распределение, когда число степеней свободы (df) для каждого значения t больше или равно 10. Следовательно, в тех случаях, когда число степеней свободы для каждого значения t меньше 10, этот метод не будет давать достаточно хорошего приближения. Т. о., хотя метод Вайнера и обладает преимуществом в том смысле, что нечувствителен к числу обозреваемых исслед., его эффективное использование, в конечном счете, зависит от числа степеней свободы, связанного с каждым исслед.
Наконец, метод Стауффера, известный как метод суммирования значений Z (adding Z's method), яв-ся, возможно, наиболее широко используемой процедурой объединения данных, к-рая иллюстрируется следующим уравнением:
.
Эта вычислительная процедура относительно проста. После преобразования приведенных в публикациях значений р в соответствующие нормированные отклонения, или Z-величины, эти значения Z суммируются и делятся на корень квадратный из числа объединяемых исслед. (N). Данная процедура основана на том известном факте, что сумма нормированных отклонений сама яв-ся нормированным отклонением, с дисперсией, равной числу включаемых в анализ исслед. Единственное известное ограничение этого метода связано с тем, что предположение единичной дисперсии для каждого из объединяемых исследований может при некоторых обстоятельствах повышать ошибки I и II рода.
Когда число объединяемых данных невелико, при оценивании общей значимости данных разумно воспользоваться не одной, а несколькими процедурами параллельно. Даже если объединяется большое число опубликованных данных, рекомендуется использовать вторую процедуру объединения как средство проверки результатов М. Хотя существенные различия в результатах применения метааналитических процедур встречаются крайне редко, вычисление критериальных статистик разными методами все же делает выводы анализа более убедительными. В зависимости от конкретных обстоятельств, исследователь должен рассматривать возможность применения и других процедур, включ. модели сложения вероятностей и проверки среднего р Эджингтона (Edgington's adding probabilities and testing mean p models), модели сложения взвешенных Z-величин и проверки среднего Z (the adding weighted Zs and testing mean Z models), а также различные вычислительные методы и методы объединения данных в блоки.

Ви переглядаєте статтю (реферат): «Общая значимость данных» з дисципліни «Психологічна енциклопедія»

Заказать диплом курсовую реферат
Реферати та публікації на інші теми: Сучасний стан систем телекомунікацій в Україні
Визначення грошових потоків з неопрацьованих первин-них даних
ХАРАКТЕРИСТИКА ОСНОВНИХ ВИДІВ КРЕДИТУ
Джерела формування власного капіталу
Системи передачі даних


Категорія: Психологічна енциклопедія | Додав: koljan (20.12.2011)
Переглядів: 434 | Рейтинг: 0.0/0
Всього коментарів: 0
Додавати коментарі можуть лише зареєстровані користувачі.
[ Реєстрація | Вхід ]

Онлайн замовлення

Заказать диплом курсовую реферат

Інші проекти




Діяльність здійснюється на основі свідоцтва про держреєстрацію ФОП