ДИПЛОМНІ КУРСОВІ РЕФЕРАТИ


ИЦ OSVITA-PLAZA

Реферати статті публікації

Пошук по сайту

 

Пошук по сайту

Головна » Реферати та статті » Фізика » Еволюція фізики

ОТНОСИТЕЛЬНОСТЬ И МЕХАНИКА
Теория относительности необходимо возникает из серьезных и глубоких противоречий в старой теории, из которых, казалось, не было выхода. Сила новой теории заключается в согласованности и простоте, с которой она разрешает все эти трудности, используя лишь немногие очень убедительные предположения.
Хотя теория возникла из проблемы поля, она должна охватить все физические законы. Трудность, по-видимому, появляется здесь. Законы поля, с одной стороны, и законы механики, с другой, имеют совершенно различный характер. Уравнения электромагнитного поля инвариантны по отношению к преобразованиям Лоренца, а уравнения механики инвариантны по отношению к классическим преобразованиям. Но теория относительности требует, чтобы все законы природы были инвариантны по отношению к лоренцовым, а не классическим преобразованиям. Последние являются лишь специальным, предельным случаем преобразований Лоренца, когда относительные скорости обеих систем координат очень малы. Если это так, то классическую механику следует изменить, чтобы согласовать ее с требованием инвариантности по отношению к преобразованиям Лоренца. Или, другими словами, классическая механика не может быть справедливой, если скорости приближаются к скорости света. Переход от одной системы координат к другой может осуществляться только единственным путем — через преобразования Лоренца.
Классическую механику нетрудно было изменить так, чтобы она не противоречила ни теории относительности, ни изобилию материала, полученного наблюдением и объясненного классической механикой. Старая механика справедлива для малых скоростей и образует предельный случай новой механики.
Интересно рассмотреть какой-либо пример изменения в классической механике, которое вносит теория относительности. Возможно, это приведет нас к некоторым выводам, которые могут быть подтверждены или опровергнуты экспериментом.
Предположим, что тело, имеющее определенную массу, движется вдоль прямой и подвергается воздействию внешней силы, действующей в направлении движения. Сила, как мы знаем, пропорциональна изменению скорости. Или, чтобы сказать яснее: не имеет значения, увеличивает ли данное тело свою скорость за одну секунду со 100 до 101 метра в секунду, или от 100 километров до 100 километров и одного метра в секунду, или от 300 000 километров до 300 000 километров и одного метра в секунду. Сила, необходимая для сообщения данному телу какого-либо определенного изменения скорости, всегда одна и та же.
Верно ли это положение с точки зрения теории относительности? Никоим образом! Этот закон справедлив только для малых скоростей. Каков же, по теории относительности, закон для больших скоростей, приближающихся к скорости света? Если скорость велика, то необходима чрезвычайно большая сила, чтобы увеличить ее. Вовсе не одно и то же — увеличить ли на один метр в секунду скорость, равную примерно 100 метрам в секунду, или же скорость, приближающуюся к световой. Чем ближе скорость к скорости света, тем труднее ее увеличить. Когда скорость равна скорости света, то уже невозможно увеличить ее дальше. Таким образом, то новое, что вносит теория относительности, не является удивительным. Скорость света есть верхний предел для всех скоростей. Никакая конечная сила, как бы велика она ни была, не может вызвать увеличения скорости сверх этого предела. На место старого закона механики, связывающего силу и изменение скорости, появляется более сложный закон. С нашей новой точки зрения классическая механика проста потому, что почти во всех наблюдениях мы имеем дело со скоростями, значительно меньшими, чем скорость света.
Покоящееся тело имеет определенную массу, так называемую массу покоя. Мы знаем из механики, что всякое тело сопротивляется изменению его движения; чем больше масса, тем сильнее сопротивление, и чем меньше масса, тем слабее сопротивление. Но в теории относительности мы имеем нечто большее. Тело сопротивляется изменению сильнее не только в случае, когда больше масса покоя, но и в случае, когда его скорость больше. Тела, скорости которых приближались бы к скорости света, оказывали бы очень сильное сопротивление внешним силам. В классической механике сопротивление данного тела есть всегда нечто неизменное, характеризуемое только его массой. В теории относительности оно зависит и от массы покоя, и от скорости. Сопротивление становится бесконечно большим по мере того, как скорость приближается к скорости света.
Только что указанные выводы позволяют нам подвергнуть теорию экспериментальной проверке. Оказывают ли снаряды, движущиеся со скоростями, близкими к скорости света, сопротивление действию внешней силы так, как это предсказывает теория? Так как положения теории относительности имеют в этом отношении количественный характер, то мы могли бы подтвердить или опровергнуть теорию, если бы мы обладали снарядами, движущимися со скоростями, близкими к скорости света.
На самом деле мы находим в природе снаряды, движущиеся с такими скоростями. Атомы радиоактивного вещества, например радия, действуют подобно батарее, которая стреляет снарядами, движущимися с огромными скоростями. Не входя в детали, мы можем указать только на один из самых важных взглядов современной физики и химии. Все вещество в мире построено из элементарных частиц, число разновидностей которых невелико. Подобно этому в одном городе здания различны по величине, конструкции и архитектуре, но на постройку всех их, от хижины до небоскреба, использованы кирпичи лишь очень немногих сортов, одинаковых во всех зданиях. Так, все известные химические элементы нашего материального мира — от легчайшего водорода до наиболее тяжелого урана — построены из одинакового рода кирпичей, т. е. одинакового рода элементарных частиц. Наиболее тяжелые элементы — наиболее сложные построения — неустойчивы, и они распадаются или, как мы говорим, они радиоактивны. Некоторые кирпичи, т. е. элементарные частицы, из которых состоят радиоактивные атомы, выбрасываются иногда с очень большими скоростями, близкими к скорости света. Атом элемента, скажем, радия, согласно нашим современным взглядам, подтверждаемым многочисленными экспериментами, обладает сложной структурой, и радиоактивный распад является одним из тех явлений, в которых выявляется, что атом построен из более простых кирпичей — элементарных частиц.
С помощью очень остроумных и сложных экспериментов мы можем обнаружить, как частицы сопротивляются действию внешней силы. Эксперименты показывают, что сопротивление, оказываемое этими частицами, зависит от скорости и как раз так, как это предсказывается теорией относительности. Во многих других случаях, где можно было обнаружить зависимость сопротивления от скорости, было установлено полное согласие между теорией относительности и экспериментом. Мы еще раз видим существенные черты творческой работы в науке: предсказание определенных фактов теорией и подтверждение их экспериментом.
Этот результат приводит к дальнейшему важному обобщению. Покоящееся тело имеет массу, но не имеет кинетической энергии, т. е. энергии движения. Движущееся тело имеет и массу, и кинетическую энергию. Оно сопротивляется изменению скорости сильнее, чем покоящееся тело. Кажется, что как будто кинетическая энергия движущегося тела увеличивает его сопротивление. Если два тела имеют одинаковую массу покоя, то тело с большей кинетической энергией сопротивляется действию внешней силы сильнее.
Представим себе ящик, наполненный шарами; пусть ящик и шары покоятся в нашей системе координат. Чтобы привести его в движение, чтобы увеличить его скорость, требуется некоторая сила. Но будет ли эта сила производить то же самое увеличение скорости за тот же промежуток времени, если шары в ящике будут быстро двигаться по всем направлениям, подобно молекулам в газе, со средними скоростями, близкими к скорости света? Теперь необходима будет большая сила, так как возросшая кинетическая энергия шаров усиливает сопротивление ящика. Энергия, во всяком случае кинетическая энергия, сопротивляется движению так же, как и весомая масса. Справедливо ли это и в отношении всех видов энергии?
Теория относительности, исходя из своих основных положений, дает ясный и убедительный ответ на этот вопрос, ответ опять-таки количественного характера: всякая энергия сопротивляется изменению движения; всякая энергия ведет себя подобно веществу; кусок железа весит больше, когда он раскален докрасна, чем когда он холоден; излучение, испускаемое Солнцем и проходящее через пространство, содержит энергию и поэтому имеет массу; Солнце и все излучающие звезды теряют массу вследствие излучения. Это заключение, совершенно общее по своему характеру, является важным достижением теории относительности и соответствует всем фактам, которые привлекались для его проверки.
Классическая физика допускала две субстанции: вещество и энергию. Первое имело вес, а вторая была невесома. В классической физике мы имели два закона сохранения: один для вещества, другой для энергии. Мы уже ставили вопрос о том, сохраняет ли еще современная физика этот взгляд на две субстанции и два закона сохранения. Ответ таков: нет. Согласно теории относительности нет существенного различия между массой и энергией. Энергия имеет массу, а масса представляет собой энергию. Вместо двух законов сохранения мы имеем только один: закон сохранения массы — энергии. Этот новый взгляд оказался очень плодотворным в дальнейшем развитии физики.
Как это случилось, что тот факт, что энергия обладает массой, а масса представляет собой энергию, столь долго оставался неизвестным? Весит ли кусок нагретого железа больше, чем кусок холодного? Теперь мы отвечаем «да», а раньше (см. стр. 38) отвечали «нет». Страницы, лежащие между этими двумя ответами, разумеется, не могут скрыть этого противоречия.
Трудности, стоящие здесь перед нами, того же порядка, какие встречались нам и прежде. Изменение массы, предсказанное теорией относительности, неизмеримо мало, его нельзя обнаружить прямым взвешиванием даже с помощью очень чувствительных весов. Доказательство того, что энергия не невесома, можно получить многими очень убедительными, но косвенными путями.
Причина этого недостатка непосредственной очевидности состоит в очень малой величине взаимообмена между веществом и энергией. Энергия по отношению к массе подобна обесцененной валюте, взятой по отношению к валюте высокой ценности. Один пример сделает это ясным. Количество теплоты, способное превратить тридцать тысяч тонн воды в пар, весило бы около одного грамма. Энергия столь долго считалась невесомой просто потому, что масса, которую она представляет, слишком мала.
Старая энергия-субстанция есть вторая жертва теории относительности. Первой была среда, в которой распространялись световые волны.
Влияние теории относительности выходит далеко за пределы тех проблем, из которых она возникла. Она снимает трудности и противоречия теории поля; она формулирует более общие механические законы; она заменяет два закона сохранения одним; она изменяет наше классическое понятие абсолютного времени. Ее ценность не ограничивается лишь сферой физики; она образует общий остов, охватывающий все явления природы.
ПРОСТРАНСТВЕННО-ВРЕМЕННОЙ КОНТИНУУМ
«Французская революция началась в Париже 14-го июля 1789 года». В этом предложении установлены место и время события. Тому, кто слышит это утверждение впервые и кто не знает, что значит «Париж», можно было бы сказать: это — город на нашей земле, расположенный на 2° восточной долготы и 49° северной широты. Два числа характеризовали бы тогда место, а «14 июля 1789 года» — время, в которое произошло событие. В физике точная характеристика, когда и где произошло событие, чрезвычайно важна, гораздо важнее, чем в истории, так как эти числа образуют основу количественного описания.
Ради простоты мы рассматривали прежде только движение вдоль прямой. Нашей координатной системой был твердый стержень с началом, но без конца. Сохраним это ограничение. Отметим на стержне различные точки; положение каждой из них может быть охарактеризовано только одним числом — координатой точки. Сказать, что координата точки равна 7,586 метра, означает, что ее расстояние от начала стержня равно 7,586 метра. Наоборот, если кто-то задает мне любое число и единицу измерения, я всегда могу найти точку на стержне, соответствующую этому числу. Мы видим, что каждому числу соответствует определенная точка на стержне, а каждой точке соответствует определенное число. Этот факт выражается математиками
в следующем предложении: все точки стержня образуют одномерный континуум. Тогда существует точка, сколь угодно близкая к данной точке стержня. Мы можем связать две отдаленные точки на стержне рядом отрезков, расположенных один за другим, каждый из которых сколь угодно мал. Таким образом, тот факт, что отрезки, связывающие отдаленные точки, произвольно малы, является характеристикой континуума. Возьмем другой пример. Пусть мы имеем плоскость или, если вы предпочитаете что-либо более конкретное, поверхность прямоугольного стола (рис. 59).

Положение точки на этом столе можно охарактеризовать двумя числами, а не одним, как раньше. Два числа суть расстояния от двух перпендикулярных краев стола. Не одно число, а пара чисел соответствует каждой точке плоскости; каждой паре чисел соответствует определенная точка. Другими словами: плоскость есть двухмерный континуум. Тогда существуют точки, сколь угодно близкие к данной точке плоскости. Две отдаленные точки могут быть связаны кривой, разделенной на отрезки, сколь угодно малые. Таким образом, произвольная малость отрезков, последовательно укладывающихся на кривой, связывающей две отдаленные точки, каждая из которых может быть определена двумя числами, снова является характеристикой двухмерного континуума.
Еще один пример. Представим себе, что вы хотите в качестве системы координат рассматривать свою комнату. Это означает, что вы хотите любое положение тела определить относительно стен комнаты. Положение кончика лампы, если она в покое, может быть описано тремя числами: два из них определяют расстояние от двух перпендикулярных стен, а третье — расстояние от пола или потолка. Каждой точке пространства соответствуют три определенных числа; каждым трем числам соответствует определенная точка в пространстве (рис. 60).

Это выражается предложением: наше пространство есть трехмерный континуум. Существуют точки, весьма близкие к каждой данной точке пространства. И опять произвольная малость отрезков линии, связывающей отдаленные точки, каждая из которых представлена тремя числами, есть характеристика трехмерного континуума.
Но все это едва ли физика. Чтобы вернуться к физике, нужно рассмотреть движение материальных частиц. Чтобы исследовать и предсказывать явления в природе, необходимо рассматривать не только место, но и время физических событий.

Время в секундах Высота над землей в метрах
0 80
1 75
2 60
3 35
4 0
Возьмем снова очень простой пример.
Маленький камешек, который примем за частицу, падает с башни. Допустим, что высота башни равна 80 метрам. Со времен Галилея мы в состоянии предсказать координаты камня в произвольный момент времени после начала его падения. На стр. 167 представлена «временная таблица», приближенно описывающая положение камня после 1, 2, 3 и 4 секунд.
В нашей «временной таблице» зарегистрированы пять событий, каждое из которых представлено двумя числами — временем и пространственной координатой каждого события. Первое событие есть начало движения камня с высоты 80 метров от земли в момент, равный нулю. Второе событие есть совпадение камня с нашим твердым стержнем (башней) на высоте 75 метров от земли. Это имеет место по истечении одной секунды. Последнее событие есть удар камня о землю.
Те сведения, которые записаны во «временной таблице», можно было бы представить иначе. Пять пар чисел ее можно было бы представить, как пять точек на плоскости. Установим сначала масштаб. Например: пусть один отрезок будет представлять метр, а другой секунду (рис. 61).

Затем нарисуем две перпендикулярные линии, одну из них, скажем, горизонтальную, назовем временной осью, вертикальную же — пространственной осью. Мы сразу же видим, что нашу «временную таблицу» можно представить пятью точками в пространственно-временной плоскости (рис. 62).



Расстояния точек от пространственной оси представляют собой координаты времени, указанные в первой колонке «временной таблицы», а расстояния от оси времен — их пространственные координаты.
Одна и та же связь выражена двумя способами: с помощью «временной таблицы» и точками на плоскости. Одно может быть построено из другого. Выбор между этими двумя представлениями является делом лишь вкуса, ибо в действительности они оба эквивалентны.
Сделаем теперь еще один шаг. Представим себе улучшенную «временную таблицу», дающую положения не для каждой секунды, а, скажем, для каждой сотой или тысячной доли секунды. Тогда у нас будет много точек в нашей пространственно-временной плоскости. Наконец, если положение дается для каждого мгновения или, как говорят математики, если пространственная координата дается как функция времени, то совокупность точек становится непрерывной линией. Поэтому наш следующий рисунок дает не отрывочные сведения, как прежде, а полное представление о движении камня.
Движение вдоль твердого стержня (башни), т. е. движение в одномерном пространстве, представлено здесь в виде кривой в двухмерном пространственно-временном континууме. Каждой точке в нашем пространственно-временном континууме соответствует пара чисел, одно из которых отмечает временную, а другое — пространственную координату. Наоборот: определенная точка в нашем пространственно-временном континууме соответствует некоторой паре чисел, характеризующей событие. Две соседние точки представляют собой два события, прошедшие в местах, близких друг от друга, и в моменты времени, непосредственно следующие друг за другом.
Вы могли бы возразить против нашего способа представления следующим образом: мало смысла в представлении единицы времени отрезком, в его механическом соединении с пространством, образующим двухмерный континуум из двух одномерных континуумов. Но тогда вы должны были бы столь же серьезно протестовать против всех графиков, представляющих, например, изменение температуры в Нью-Йорке в течение последнего лета, или против графиков, изображающих изменение стоимости жизни за последние несколько лет, так как в каждом из этих случаев употребляется тот же самый метод. В температурных графиках одномерный температурный континуум соединяется с одномерным временным континуумом в двухмерный температурно-временной континуум.
Вернемся к частице, падающей с 80-метровой башни. Наша графическая картина движения есть полезное соглашение, так как она позволяет нам характеризовать положение частицы в любой произвольный момент времени. Зная, как движется частица мы хотели бы изобразить ее движение еще раз. Сделать это можно двумя путями.
Вспомним изображение частиц, изменяющих свое положение со временем в одномерном пространстве. Мы изображаем движение как ряд событий в одномерном пространственном континууме. Мы не смешиваем время и пространство, применяя динамическую картину, в которой положения изменяются со временем.
Но можно изобразить то же самое движение другим путем. Мы можем образовать статическую картину, рассматривая кривую в двухмерном пространственно-временном континууме. Теперь движение рассматривается как нечто, что есть, что существует в двухмерном пространственно-временном континууме, а не как нечто, изменяющееся в одномерном пространственном континууме.
Обе эти картины совершенно равноценны, и предпочтение одной из них перед другой есть дело лишь соглашения и вкуса.
То. что здесь сказано о двух картинах движения, не имеет отношения к теории относительности. Оба представления могут быть использованы с одинаковым правом, хотя классическая теория скорее предпочитала динамическую картину описания движения, как того, что происходит в пространстве, статической картине, описывающей его в пространстве-времени. Но теория относительности изменила этот взгляд. Она явно предпочла статическую картину и нашла в этом представлении движения, как того, что существует в пространстве-времени, более удобную и более объективную картину реальности. Мы должны еще ответить на вопрос, почему эти две картины эквивалентны с точки зрения классической физики и не эквивалентны с точки зрения теории относительности. Ответ будет понятным, если снова рассмотреть две системы координат, движущиеся прямолинейно и равномерно друг относительно друга.
Согласно классической физике наблюдатели в обеих системах, движущихся прямолинейно и равномерно друг относительно друга, найдут для одного и того же события различные пространственные координаты, но одну и ту же временную координату. Таким образом, в нашем примере удар камня о землю характеризуется при нашем выборе системы координат временной координатой «4» и пространственной координатой «О». Согласно классической механике наблюдатели, движущиеся прямолинейно и равномерно относительно выбранной системы координат, обнаружат, что камень достигнет земли спустя четыре секунды после начала падения. Но каждый из наблюдателей относит расстояние к своей системе координат, и они будут, вообще говоря, связывать различные пространственные координаты с событием соударения, хотя временная координата будет одной и той же для всех других наблюдателей, движущихся прямолинейно и равномерно друг относительно друга. Классическая физика знает только «абсолютное» время, текущее одинаково для всех наблюдателей. Для каждой системы координат двухмерный континуум может быть разбит на два одномерных континуума: время и пространство. Благодаря «абсолютному» характеру времени переход от «статики» к «динамической» картине движения имеет в классической физике объективный смысл.
Но мы уже убедились в том, что классические преобразования не могут применяться в физике в общем случае. С практической точки зрения они еще пригодны для малых скоростей, но не годятся для обоснования фундаментальных физических вопросов.
Согласно теории относительности момент соударения камня с землей не будет одним и тем же для всех наблюдателей. И временная координата, и пространственная координата будут различными в двух различных системах координат, и изменение временной координаты будет весьма заметным, если относительная скорость систем приближается к скорости света. Двухмерный континуум не может быть разбит на два одномерных континуума, как в классической физике. Мы не можем рассматривать пространство и время раздельно при определении пространственно-временных координат в другой системе координат. Разделение двухмерного континуума на два одномерных оказывается, с точки зрения теории относительности, произвольным процессом, не имеющим объективного смысла.
Все, что мы только что сказали, нетрудно обобщить для случая движения, не ограниченного прямой линией. В самом деле, для описания событий в природе нужно применить не два, а четыре числа. Физическое пространство, постигаемое через объекты и их движения, имеет три измерения, и положения объектов характеризуются тремя числами. Момент события есть четвертое число. Каждому событию соответствует четыре определенных числа; каким-либо четырем числам соответствует определенное событие. Поэтому: мир событий образует четырехмерный континуум. В этом нет ничего мистического, и последнее предложение одинаково справедливо и для классической физики, и для теории относительности. И опять различие обнаруживается лишь тогда, когда рассматриваются две системы координат, движущиеся друг относительно друга. Пусть движется комната, а наблюдатели внутри и вне ее определяют пространственно-временные координаты одних и тех же событий. Сторонник классической физики разобьет четырехмерный континуум на трехмерное пространство и одномерный временной континуум. Старый физик заботится только о преобразовании пространства, так как время для него абсолютно. Он находит разбиение четырехмерного мирового континуума на пространство и время естественным и удобным. Но с точки зрения теории относительности время, так же как и пространство, изменяется при переходе от одной системы координат к другой, и преобразования Лоренца рассматривают трансформационные свойства четырехмерного пространственно-временного континуума —нашего четырехмерного мира событий.
Мир событий может быть описан динамически с помощью картины, изменяющейся во времени и набросанной на фоне трехмерного пространства. Но он может быть также описан посредством статической картины, набросанной на фоне четырехмерного пространственно-временного континуума. С точки зрения классической физики обе картины, динамическая и статическая,— равноценны. Но с точки зрения теории относительности статическая картина более удобна и более объективна.
Даже в теории относительности мы можем еще употреблять динамическую картину, если мы ее предпочитаем. Но мы должны помнить, что это деление на время и пространство не имеет объективного смысла, так как время больше не является «абсолютным». Дальше мы еще будем пользоваться «динамическим», а не «статическим» языком, но при этом всегда будем учитывать его ограниченность.

Ви переглядаєте статтю (реферат): «ОТНОСИТЕЛЬНОСТЬ И МЕХАНИКА» з дисципліни «Еволюція фізики»

Заказать диплом курсовую реферат
Реферати та публікації на інші теми: Якість створення продукту
Визначення грошових потоків на основі прогнозних фінансових звіті...
Аудит доходів та витрат іншої діяльності
РОЗВИТОК ПРИНЦИПІВ СИСТЕМНОГО, КОМПЛЕКСНОГО УПРАВЛІННЯ ЯКІСТЮ
Сучасний стан систем телекомунікацій в Україні


Категорія: Еволюція фізики | Додав: koljan (09.11.2013)
Переглядів: 487 | Рейтинг: 0.0/0
Всього коментарів: 0
Додавати коментарі можуть лише зареєстровані користувачі.
[ Реєстрація | Вхід ]

Онлайн замовлення

Заказать диплом курсовую реферат

Інші проекти




Діяльність здійснюється на основі свідоцтва про держреєстрацію ФОП