ДИПЛОМНІ КУРСОВІ РЕФЕРАТИ


ИЦ OSVITA-PLAZA

Реферати статті публікації

Пошук по сайту

 

Пошук по сайту

Головна » Реферати та статті » Історія науки і техніки » Історія науки

Геометрическая оптика
Геометрическая оптика могла появиться только после установления понятия
о световом луче и определения законов его распространении. Первая
попытка создания общей теории оптических систем принадлежит, как мы уже
отмечали, Кеплеру, но только после открытия закона преломления Декартом
и Снеллиусом стало возможным создание строгой теории. Важнейшей
практической задачей при создании оптической системы было установление
радиусов кривизны линзы в зависимости от заданного фокусного расстояния.
Впервые теоретическое решение этой задачи было найдено Б. Кавальери в его
сочинении «Шесть геометрических упражнений» (1647 г.) Различные частные
случаи расчета линз изложены в «Оптических лекциях» И. Барроу (1674 г.)
Ньютон нашел формулу, носящую его имя, связывающую положение на
оптической оси предмета и изображения, даваемого идеальной линзой с
заданным фокусным расстоянием. Ньютон, по сути дела, ввел понятие
параксиальной оптики — раздела геометрической оптики, в котором
рассматривается ход лучей вблизи оптической оси — «нулевых лучей». Параксиальные
лучи не дают искажений изображения — аберраций. В то же время изобра-
186
4. Оптика
жение, построенное действительными лучами, имеет аберрации. Аберрации
были известны еще арабским ученым. Наличие так называемой продольной
сферической аберрации вогнутого сферического зеркала строго обосновал
Р. Бэкон. Попытки исправления аберраций предпринимали Декарт и
Гюйгенс. Кроме геометрических искажений изображения, ухудшения его
четкости, что является следствием аберраций, в оптических приборах
наблюдалась радужная окраска изображения, цветной ореол. После открытия
Ньютоном дисперсии света стала ясна причина окрашивания изображения,
названного хроматической аберрацией: различная преломляемость лучей
разного цвета. Ньютон нашел формулу, определяющую хроматическую
аберрацию, вносимую преломляющей поверхностью. Он провел
исследования возможности исправления хроматической аберрации и в ходе этих
исследований пришел к выводу, имеющему весьма неприятные последствия
в развитии оптики. Ньютон совершенно верно предположил, что
хроматическую аберрацию можно устранить путем подбора сочетаний материалов
оптической системы с различной преломляющей способностью.
Пространство между линзами, составляющими объектив, Ньютон заполнил водой. В
воду Ньютон добавил сахар для улучшения прозрачности. Показатель
преломления такой «просветленной» воды оказался очень близким к
показателю преломления стекла, и устранения хроматизма добиться было
невозможно. Отсюда Ньютон сделал ошибочный вывод о независимости
относительной дисперсии от материала прозрачной среды и, соответственно, о
невозможности исправить хроматическую аберрацию. Этот вывод побудил
Ньютона заняться зеркальными системами, в которых проблема хроматических
аберраций (хроматизма) не возникает. Его знаменитый телескоп был
зеркальным, то есть телескопом — рефлектором. Линзовые телескопы
называют рефракторами.
Создание методов расчета оптических систем, свободных от хроматизма,
связанно с именами Долланда, Эйлера и Эпинуса. Первый ахроматический
микроскоп был построен Эпинусом в 1784 г.
Важное влияние на развитие геометрической оптики оказал Гаусс. Гаусс
воспринял идею Ньютона о параксиальной оптике и создал теорию
идеальной оптической системы, иногда называемую «гауссовой оптикой
параксиальных лучей». Основные формулы Гауссовой оптики используются и
сегодня при проектировании оптических систем, при этом начало
проектирования обычно начинается с расчета идеальной оптической системы.
В рамках теории идеальной оптической системы невозможно рассчитать
и исправить аберрации или оценить качество оптического изображения,
даваемого реальной оптической системой. Необходима была теория,
связывающая параметры конструкции оптической системы (радиусы кривизны
поверхностей, промежутки между элементами, толщины линз, показатели
преломления и другие) с качеством изображения. Критерии качества также
следовало четко определить. Такая теория, называемая «теорией аберраций
третьего порядка», была создана А. Зейделем в конце 50-х годов XIX в. и
развита И. Петцвалем.
Теория аберраций стала мощным математическим инструментом созда-
187
Раздел II. Основные направления классической науки
ния оптических приборов, вначале зрительных труб и микроскопов, а затем
фотографических систем, проекционных систем, телескопов. По мере
создания этих приборов совершенствовались теория и методы их расчета.
Важные для проектирования оптических систем законы геометрической
оптики были установлены выдающимися математиками и физиками Лагран-
жем, Гельмгольцем, Аббе, Гершелем, Фраунгофером, Вейерштрассом.
Первым в России учебником, в котором были систематически
изложены вопросы геометрической оптики, физической оптики и методы
проектирования оптических приборов, стала книга профессора Константинов-
ского межевого института Н.М. Кислова «Теория оптических
инструментов», изданная в 1915 г.

Ви переглядаєте статтю (реферат): «Геометрическая оптика» з дисципліни «Історія науки»

Заказать диплом курсовую реферат
Реферати та публікації на інші теми: Аудит місцевих податків. Аудит податку з реклами
ТОВАРНИЙ АСОРТИМЕНТ І ЙОГО ПОКАЗНИКИ
Магнитная гора
Аудит визнання запасів і правильності їх оцінки
СУЧАСНИЙ МОНЕТАРИЗМ ЯК НАПРЯМ РОЗВИТКУ КІЛЬКІСНОЇ ТЕОРІЇ


Категорія: Історія науки | Додав: koljan (18.05.2013)
Переглядів: 640 | Рейтинг: 0.0/0
Всього коментарів: 0
Додавати коментарі можуть лише зареєстровані користувачі.
[ Реєстрація | Вхід ]

Онлайн замовлення

Заказать диплом курсовую реферат

Інші проекти




Діяльність здійснюється на основі свідоцтва про держреєстрацію ФОП