ДИПЛОМНІ КУРСОВІ РЕФЕРАТИ


ИЦ OSVITA-PLAZA

Реферати статті публікації

Пошук по сайту

 

Пошук по сайту

Головна » Реферати та статті » Екологія » Екологічний моніторинг

Контроль воздействия ксенобиотиков
Отдельно стоит сказать о мониторинге искусственных химических веществ – ксенобиотиков. В настоящее время в результате хозяйственной деятельности человека в биосфере циркулирует большое количество различных чужеродных для человека соединений, многие из которых имеют исключительно высокую токсичность [19, 42]. Они наиболее опасны как для человека, так и для природной среды, т.к. не включены в естественные процессы утилизации химических соединений. Из органических соединений – загрязнителей выделены «приоритетные», которые представляют наибольшую опасность для человека сейчас и в будущем. Это прежде всего полихлорированные диоксины, дибензофураны и другие родственные хлорсодержащие органические соединения. За высокую токсичность их относят к особому классу загрязняющих веществ – экотоксикантам или суперэкотоксикантам [27].
Диоксины – полихлорированные соединения, содержащие ароматические ядра, являются суперэкотоксикантами. Диоксины присутствуют в природной среде уже несколько десятилетий, со времени начала производства хлорорганических соединений. Они обладают широким спектром биологического действия на человека и животных.
В малых дозах диоксины вызывают мутагенный эффект, отличаются кумулятивной способностью, ингибирующим и индуцирующим действием по отношению к некоторым ферментам живого организма, вызывают у человека повышение аллергической чувствительности к различным ксенобиотикам. Их опасность очень велика даже в сравнении с тысячами других токсичных примесей. Комплексный характер действия этой группы соединений приводит к подавлению иммунитета, поражению органов и истощению организма.
В природной среде эти суперэкотоксиканты достаточно устойчивы и могут длительное время находиться в ней без изменений. Для них, по существу, отсутствует предел токсичности (явление так называемой сверхкумуляции), а понятие ПДК теряет смысл. Организм человека подвержен действию диоксинов через воздух (аэрозоли), воду, а также пищевые продукты. Они могут накапливаться в жирах (в ходе их технологической переработки) и не разрушаются при кулинарной (тепловой) обработке, сохраняя свои токсические свойства.
Уже в 30-х гг. двадцатого столетия появились первые сведения о заболеваниях людей, вызванных воздействием сильных антисептиков – хлорфенолов. Тогда ошибочно полагали, что болезнь происходит из-за контакта с этим основным продуктом, но не было данных о воздействии диоксинов. Во время войны во Вьетнаме (1962-1971 гг.) американские войска широко использовали дефолианты в борьбе с партизанами. Дефолиант вызывает ускоренное опадание листьев деревьев. Всего над джунглями было распылено 57 тысяч тонн этого препарата, в котором в виде примеси содержалось до 170 кг диоксина. Сейчас этот дефолиант известен под названием 2,4-D(2,4–дихлорфеноуксусная кислота). Через несколько лет в г. Севезо (Италия) на химическом заводе произошла катастрофа, в результате которой сотни тонн пестицида 2,4,5-трихлорфеноуксусной кислоты (2,4,5-Т) были распылены в окрестностях предприятия. Погибло много людей и сельскохозяйственных животных. В выбросе оказалось около 3–5 кг диоксинов, о чем тогда не было известно.
После этих событий покров тайны с диоксинов был снят. Появились сообщения о содержании диоксинов в различных препаратах, о накоплении их в экосистемах. Диоксины стали находить в выхлопных газах автомобильного транспорта, продуктах сжигания мусора, в грудном молоке женщин (1984 г.), в выбросах целлюлозно-бумажной промышленности (1985 г. – США, Швеция). Можно сказать, что диоксины и родственные им по структуре соединения непрерывно генерируются человеческой цивилизацией и поступают в биосферу. Уместно отметить, что ни в тканях эскимосов, замерзших 400 лет назад, ни в тканях мумий индейцев, найденных на территории современного Чили, не удалось обнаружить диоксины даже в следовых количествах. Они порождение современной цивилизации, результат хозяйственной деятельности человека в промышленно развитых странах.
Дибензо-n-диоксины относятся к гетероциклическим полихлорированным соединениям, в структуре которых присутствуют два ароматических кольца, связанных между собой двумя кислородными мостиками. Аналогичные им дибензофураны содержат один атом кислорода. В родственных полихлорированных бифенилах два ароматических кольца связаны обычной химической связью.
Все перечисленные соединения характеризуются высокой химической устойчивостью. Наряду с высокой липофильностью, т.е. способностью растворяться в органических растворителях и удерживаться жировыми и жироподобными тканями, диоксины обладают высокой адгезией к частицам почвы, золы, донным отложениям. Диоксины как бы концентрируются на этих частицах, переходя из водной среды во взвеси, затем в микроорганизмы. Этому способствует и эффект высаливания, если в водной среде присутствуют неорганические соли.
Токсическое действие соединений зависит от числа атомов хлора и их положения в структуре молекулы. Максимальной токсичностью обладает 2,3,7,8–тетрахлордибензодиоксин (2,3,7,8–ТХДД), затем 1,2,3,7,8–пентахлордибензодиоксин. Близки к ним производные фуранового ряда, в частности 2,3,7,8–ТХДФ, и его Cl5–изомер. Эти соединения имеют токсичность на много порядков выше, чем, например, широко известный ДДТ (1,1,1-Трихлор-2,2-бис(n-хлорфенил)этан).
Когда концентрация ДДТ в молоке кормящих матерей США превысила ПДК в 4 раза, ВОЗ (Всемирная организация здравоохранения) запретила ДДТ. Последовательность запрета: Новая Зеландия, СССР, Венгрия, Швеция, Дания, Финляндия и др. Хотя были отступления от этого запрета: в СССР еще долго опыляли тайгу ДДТ в борьбе с энцефалитным клещом. ДДТ до сих пор используется в некоторых штатах Австралии, Китая для опыления плодовых деревьев. Производит ДДТ, как и прежде, Индия – до 4200 тонн ежегодно (1980).
ДДТ может вызывать инверсию пола. В одной из колоний чаек в Калифорнии после обработки гнезд ДДТ появилось в четыре раза больше женских особей, чем мужских. Когда в яйца чаек впрыскивали ДДТ, половина мужских зародышей превратилась в женские. У человека ДДТ аккумулируется прежде всего в мозгу, способность мозга нормально функционировать теряется. ДДТ действует на мозг как нервно-паралитический яд.
Стоит отметить, что ДДТ одновременно относится к другой известной группе ксенобиотиков – пестицидам. Пестициды (от лат. pestis – зараза и лат. caedo – убиваю) представляют собой химические вещества, используемые для борьбы с вредными организмами. Пестициды объединяют следующие группы таких веществ: гербициды, уничтожающие сорняки; инсектициды, уничтожающие насекомых-вредителей; фунгициды, уничтожающие патогенные грибы; зооциды, уничтожающие вредных теплокровных животных и т. д. Большая часть пестицидов – это яды, отравляющие организмы-мишени, но к ним относят также стерилизаторы (вещества, вызывающие бесплодие) и ингибиторы роста.
Пестициды и диоксины химически очень близки. Некоторые из диоксинов близки к отравляющим веществам типа зарина, замана и табуна. Однако их опасность состоит не в ядовитости как таковой, а в способности вызывать аномалии в работе генетического аппарата организма.
Источники диоксинов:
Максимальный вклад вносят предприятия промышленного хлорорганического синтеза тех органических соединений, которые содержат бензольные ядра (например, производство пестицидов).
Пиролитическая переработка и сжигание отходов этих производств, сжигание автомобильных шин, покрышек.
При электролизе растворов неорганических хлоридов на графитовых электродах возможно образование некоторого количества диоксинов.
Заметный вклад в диоксиновый фон вносит целлюлозно-бумажное производство. В ходе использования хлора в процессе отбеливания бумаги возможно образование хлорированных фенолов – предшественников диоксинов. Бумага, упаковка и изделия из нее (салфетки, детские пеленки, носовые платки) являются еще одним источником диоксинов в быту, хотя и на чрезвычайно низком уровне их содержания (≈10–12 г/кг). Сейчас появились новые технологии изготовления бумаги без использования хлора. На изделиях из такой бумаги делается соответствующая пометка: «chlorine free».
Источником диоксинов могут быть и горящая свалка бытовых отходов, содержащих изделия из поливинилхлорида, а также лесные пожары, если они возникли после обработки леса пестицидами.
С 1987 г. мониторинг диоксинов осуществляется в США, Канаде, Японии, в большинстве стран Западной Европы. В России также проводятся эти работы, имеется пять аккредитованных лабораторий мониторинга диоксинов. Определение основано на использовании газожидкостной хроматографии и масс-спектрометра высокого разрешения. Стоимость каждого определения достигает 1-3 тыс. долларов США. Легко видеть, что при таких высоких затратах массовый мониторинг невозможен, а более дешевые методы неэффективны.
Фенол. Фенолы представляют собой производные бензола с одной или несколькими гидроксильными группами. Их принято делить на две группы – летучие с паром фенолы (фенол, крезолы, ксиленолы, гваякол, тимол) и нелетучие фенолы (резорцин, пирокатехин, гидрохинон, пирогаллол и другие многоатомные фенолы).
Фенолы в естественных условиях образуются в процессах метаболизма водных организмов, при биохимическом распаде и трансформации органических веществ, протекающих как в водной толще, так и в донных отложениях.
Фенолы являются одним из наиболее распространенных загрязнений, поступающих в поверхностные воды со стоками предприятий нефтеперерабатывающей, сланцеперабатывающей, лесохимической, коксохимической, анилинокласочной промышленности и др. В сточных водах этих предприятий содержание фенолов может превосходить 10-20 г/дм3 при весьма разнообразных сочетаниях. В поверхностных водах фенолы могут находиться в растворенном состоянии в виде фенолятов, фенолят-ионов и свободных фенолов. Фенолы в водах могут вступать в реакции конденсации и полимеризации, образуя сложные гумусоподобные и другие довольно устойчивые соединения. В условиях природных водоемов процессы адсорбции фенолов донными отложениями и взвесями играют незначительную роль. В незагрязненных или слабозагрязненных речных водах содержание фенолов обычно не превышает 20 мкг/дм3. Быстрее всех разрушается собственно фенол, медленнее крезолы, еще медленнее ксиленолы. Многоатомные фенолы разрушаются в основном путем химического окисления.
Превышение естественного фона по фенолу может служить указанием на загрязнение водоемов. В загрязненных фенолами природных водах содержание их может достигать десятков и даже сотен микрограммов в 1 дм3. Фенолы – соединения нестойкие и подвергаются биохимическому и химическому окислению.
В результате хлорирования воды, содержащей фенолы, образуются устойчивые соединения хлорфенолов, малейшие следы которых (0,1 мкг/дм3) придают воде характерный привкус. В токсикологическом и органолептическом отношении фенолы неравноценны. Летучие с паром фенолы более токсичны и обладают более интенсивным запахом при хлорировании. Наиболее резкие запахи дают простой фенол и крезолы.
Применяется в химической (для создания пестицидов) и в фармацевтической (лекарства) промышленности, а также при производстве фенолформальдегидных пластмасс. Для водных объектов определяют специальный показатель – фенольный индекс. Определяется как массовая концентрация фенолов в воде, вступающих в реакцию с 4-аминоантипирином и в определенных условиях образующих с ним окрашенные соединения.
Детергенты (ПАВ) – химические вещества, понижающее поверхностное натяжение воды и используемые как моющие средства.
СПАВ уменьшают поверхностное натяжение воды, образуя хлопья пены на ее поверхности при малейших возмущениях, препятствуют поступлению солнечной энергии, воздействуя на температурный режим водоема, снижают поступление кислорода в воду из атмосферы (при концентрации СПАВ около 1 мг/л инвазия кислорода уменьшается примерно на 15%). СПАВ не являются высокотоксичными веществами, однако их косвенное воздействие на гидробионты может быть весьма значительным. СПАВ разрушают слизистую оболочку у рыб, замедляют рост и развитие многих видов водной фауны. СПАВ препятствуют разложению сложных искусственных соединений и оказывают ингибирующее действие на процесс нитрификации, что приводит к накоплению в воде высокотоксичных нитритов. Особую проблему представляет поступление в водоемы детергентов, содержащих фосфор, что стимулирует развитие эвтрофирования водоема.
Кроме того, детергенты изменяют проницаемость клеточных мембран и поэтому нарушают транспорт веществ, необходимых для нормальной жизнедеятельности микроорганизмов, через оболочку микробной клетки, оказывая таким образом противомикробное действие. Последнее свойство активно используют в медицине и в быту.
Главными факторами самоочищения природных вод от СПАВ являются процессы биохимического окисления, сорбция взвешенными веществами и донными отложениями.
Бензол. Бензол представляет собой бесцветную жидкость с характерным запахом.
В поверхностные воды бензол поступает с предприятий и производств основного органического синтеза, нефтехимической, химико-фармацевтической промышленности, производства пластмасс, взрывчатых веществ, ионообменных смол, лаков и красок, искусственных кож, а также со сточными водами мебельных фабрик. В стоках коксохимических заводов бензол содержится в концентрациях 100-160 мг/дм3, в сточных водах производства капролактама – 100 мг/дм3, производства изопропилбензола – до 20000 мг/дм3. Источником загрязнения акваторий может быть транспортный флот (применяется в моторном топливе для повышения октанового числа). Бензол используется также в качестве ПАВ.
Бензол быстро испаряется из водоемов в атмосферу (период полуиспарения составляет 37,3 минуты при 20 оС). Порог ощущения запаха бензола в воде составляет 0,5 мг/дм3 при 20 оС. При 2,9 мг/дм3 запах характеризуется интенсивностью в 1 балл, при 7,5 мг/дм3 – в 2 балла. Мясо рыб приобретает неприятный запах при концентрации 10 мг/дм3. При 5 мг/дм3 запах исчезает через сутки, при 10 мг/дм3 интенсивность запаха за сутки снижается до 1 балла, а при 25 мг/дм3 запах снижается до 1 балла через двое суток.
Привкус при содержании бензола в воде 1,2 мг/дм3 измеряется в 1 балл, при 2,5 мг/дм3 – в 2 балла. Наличие в воде бензола (до 5 мг/дм3) не изменяет процессы биологического потребления кислорода, т.к. под влиянием биохимических процессов в воде бензол окисляется слабо. В концентрациях 5-25 мг/дм3 бензол не задерживает минерализации органических веществ, не влияет на процессы бактериального самоочищения водоемов.
При многократных воздействиях низких концентраций бензола наблюдаются изменения в крови и кроветворных органах, поражения центральной и периферической нервной системы, желудочно-кишечного тракта. Бензол классифицирован, как сильно подозреваемый канцероген. Основным метаболитом бензола является фенол. Бензол оказывает токсическое действие на гидробионты.
Нефтепродукты. Нефтепродукты относятся к числу наиболее распространенных и опасных веществ, загрязняющих поверхностные воды. Нефть и продукты ее переработки представляют собой чрезвычайно сложную, непостоянную и разнообразную смесь веществ (низко- и высокомолекулярные предельные, непредельные алифатические, нафтеновые, ароматические углеводороды, кислородные, азотистые, сернистые соединения, а также ненасыщенные гетероциклические соединения типа смол, асфальтенов, ангидридов, асфальтеновых кислот). Понятие «нефтепродукты» в гидрохимии условно ограничивается только углеводородной фракцией (алифатические, ароматические, алициклические углеводороды).
Большие количества нефтепродуктов поступают в поверхностные воды при перевозке нефти водным путем, со сточными водами предприятий нефтедобывающей, нефтеперерабатывающей, химической, металлургической и других отраслей промышленности, с хозяйственно-бытовыми водами. В результате протекающих в водоеме процессов испарения, сорбции, биохимического и химического окисления концентрация нефтепродуктов может существенно снижаться, при этом значительным изменениям может подвергаться их химический состав.
Наиболее устойчивы ароматические углеводороды, наименее – алканы. Нефтепродукты находятся в различных миграционных формах: растворенной, эмульгированной, сорбированной на твердых частицах взвесей и донных отложений, в виде пленки на поверхности воды. Обычно в момент поступления масса нефтепродуктов сосредоточена в пленке. По мере удаления от источника загрязнения происходит перераспределение между основными формами миграции, направленное в сторону повышения доли растворенных, эмульгированных, сорбированных нефтепродуктов. Количественное соотношение этих форм определяется комплексом факторов, важнейшими из которых являются условия поступления нефтепродуктов в водный объект, расстояние от места сброса, скорость течения и перемешивания водных масс, характер и степень загрязненности природных вод, а также состав нефтепродуктов, из вязкость, растворимость, плотность, температура кипения компонентов. При санитарно-химическом контроле определяют, как правило, сумму растворенных, эмульгированных и сорбированных форм нефти.
Содержание нефтепродуктов в речных, озерных, морских, подземных водах и атмосферных осадках колеблется в довольно широких пределах и обычно составляет сотые и десятые доли мг/дм3.
В незагрязненных нефтепродуктами водных объектах концентрация естественных углеводородов может колебаться в морских водах от 0,01 до 0,10 мг/дм3 и выше, в речных и озерных водах от 0,01 до 0,20 мг/дм3, иногда достигая 1-1,5 мг/дм3. Содержание естественных углеводородов определяется трофическим статусом водоема и в значительной мере зависит от биологической ситуации в водоеме.
Входящие в состав нефтепродуктов низкомолекулярные алифатические, нафтеновые и особенно ароматические углеводороды оказывают токсическое и, в некоторой степени, наркотическое воздействие на организм, поражая сердечно-сосудистую и нервную системы. Наибольшую опасность представляют полициклические конденсированные углеводороды типа 3,4-бензапирена, обладающие канцерогенными свойствами. Нефтепродукты обволакивают оперение птиц, поверхность тела и органы других гидробионтов, вызывая заболевания и гибель.
Отрицательное влияние нефтепродуктов, особенно в концентрациях 0,001-10 мг/дм3, и присутствие их в виде пленки сказывается и на развитии высшей водной растительности и микрофитов. В присутствии нефтепродуктов вода приобретает специфический вкус и запах, изменяется ее цвет, рН, ухудшается газообмен с атмосферой.
Гидрохинон. В поверхностные воды гидрохинон попадает со сточными водами производства пластмасс, кинофотоматериалов, красителей, предприятий нефтеперерабатывающей промышленности.
Гидрохинон является сильным восстановителем. Как и фенол, он обладает слабым дезинфицирующим действием. Гидрохинон не придает воде запаха, привкус появляется при концентрации несколько граммов в 1 дм3; пороговая концентрация по окраске воды составляет 0,2 мг/дм3, по влиянию на санитарный режим водоемов – 0,1 мг/дм3. Гидрохинон при содержании 100 мг/дм3 стерилизует воду, при 10 мг/дм3 – тормозит развитие сапрофитной микрофлоры. В концентрациях ниже 10 мг/дм3 гидрохинон подвергается окислению и стимулирует развитие водных бактерий. При концентрации 2 мг/дм3 гидрохинон тормозит нитрификацию разведенных сточных вод, 15 мг/дм3 – процесс их биологической очистки.
В организме гидрохинон окисляется в бензохинон, который превращает гемоглобин в метгемоглобин тем самым препятствуя связыванию с кислородом.
Метанол. Метанол попадает в водоемы со сточными водами производств получения и применения метанола. В сточных водах предприятий целлюлозно-бумажной промышленности содержится 4,5-58 г/дм3 метанола, производств фенолоформальдегидных смол – 20-25 г/дм3, лаков и красок 2 г/дм3, синтетических волокон и пластмасс – до 600 мг/дм3, в сточных водах генераторных станций работающих на буром, каменном угле, торфе, древесине – до 5 г/дм3.
При попадании в воду метанол снижает содержание в ней О2 (вследствие окисления метанола). Концентрация выше 4 мг/дм3 влияет на санитарный режим водоемов. При содержании 200 мг/дм3 наблюдается торможение биологической очистки сточных вод. Порог восприятия запаха метанола составляет 30-50 мг/дм3. Концентрация 3 мг/дм3 стимулирует рост синезеленых водорослей и нарушает потребление кислорода дафниями. Летальные концентрации для рыб составляют 0,25-17 г/дм3.
Метанол является сильным ядом, обладающим направленным действием на нервную и сердечно-сосудистую системы, зрительные нервы, сетчатку глаз. Механизм действия метанола связан с его метаболизмом по типу летального синтеза с образованием формальдегида и муравьиной кислоты, далее окисляющихся до СО2. Поражение зрения обусловлено снижением синтеза АТФ в сетчатке глаза.

Ви переглядаєте статтю (реферат): «Контроль воздействия ксенобиотиков» з дисципліни «Екологічний моніторинг»

Заказать диплом курсовую реферат
Реферати та публікації на інші теми: Планування аудиторської перевірки підприємства
ФОРМУВАННЯ ТОВАРНОГО АСОРТИМЕНТУ
Організація готівкових грошових розрахунків
ІНФОРМАЦІЙНЕ ТА НОРМАТИВНО-ПРАВОВЕ ЗАБЕЗПЕЧЕННЯ СТВОРЕННЯ НАУКОМІ...
ПРИЗНАЧЕННЯ, СТАТУС ТА ОСНОВИ ОРГАНІЗАЦІЇ ЦЕНТРАЛЬНОГО БАНКУ


Категорія: Екологічний моніторинг | Додав: koljan (14.04.2013)
Переглядів: 723 | Рейтинг: 0.0/0
Всього коментарів: 0
Додавати коментарі можуть лише зареєстровані користувачі.
[ Реєстрація | Вхід ]

Онлайн замовлення

Заказать диплом курсовую реферат

Інші проекти




Діяльність здійснюється на основі свідоцтва про держреєстрацію ФОП