ДИПЛОМНІ КУРСОВІ РЕФЕРАТИ


ИЦ OSVITA-PLAZA

Реферати статті публікації

Пошук по сайту

 

Пошук по сайту

Головна » Реферати та статті » Біологія » Введення в кількісну біологію

Задача "найти зависимость между двумя признаками"
Изложенные выше методы статистического анализа дают возможность изучать изменчивость биологических объектов по отдельным признакам – весу, размерам, плодовитости, физиологическим показателям и др. Однако в ряде случаев важно знать, какова зависимость между вариацией двух или нескольких признаков, изменяются ли две переменные самостоятельно, независимо друг от друга, или изменчивость одного признака в какой-то степени связана с изменчивостью другого. В качестве второй переменной часто выступает какой-либо фактор среды.
Эту задачу можно рассматривать как развитие метода дисперсионного анализ, решающего задачу сравнения нескольких выборок (изучения влияния фактора на признак). Техника дисперсионного анализа имеет две особенности. Во-первых, фактор (факториальный признак) задан дискретно, в виде градаций, или "доз". Когда исследуется фактор, заданный качественно, то градации оказываются очень эффективным способом его превращения в подобие количественно заданного фактора. Вместе с тем фактор, выраженный количественной величиной, имеет большее число значений, чем число градаций. Тогда в грубой градуальной схеме дисперсионного анализа утрачивается часть информации, имеющейся в исходных выборках. Кроме этого, дисперсионный анализ явным образом не учитывает тенденции изменения среднего уровня признака при изменении уровня фактора, не содержит показателя динамики зависимости признака от фактора.
Сделать необходимые дополнения позволяет исследование сопряженной (взаимозависимой) изменчивости признаков в рамках регрессионного и корреляционного анализов. Способ представления отдельных наблюдений здесь меняется: каждая варианта рассматривается как носитель двух численных характеристик объекта измерения, двух зависимых значений случайной величины. Если выше мы отождествляли отдельное значение с отдельной вариантой, то теперь мы рассматриваем варианту как некоторое тело, обладающее минимум двумя зарегистрированными качествами, различными у разных вариант:


Например, для любого животного можно определить массу (M) и длину (L) тела; отдельная варианта будет нести два значения (L, M). При этом множество вариант выборки можно отобразить графически как точки на плоскости осей двух признаков M и L.

Вся выборка предстанет в виде множества точек на плоскости (двумерное рассеяние). Как видно на диаграмме, "облако" вариант вытянуто в направлении диагонали облака точек. Справа вверху находятся варианты с высокими значениями и размеров и массы тела, в левом нижнем углу – с наименьшими значениями. В центре находятся варианты с промежуточными, средними значениями. В первом приближении двумерное распределение – это простая ординация вариант на плоскости осей двух признаков.
Помимо рассеяния на плоскости, в определение двумерного распределения входит и частота встречаемости отдельных вариант. В соответствии с идеологией регрессионного анализа признаки x и y должны подчиняться нормальному закону. Значит, для каждого значения x признак y дает множество нормально распределенных значений; то же и для каждого значения признака y (для случая математической совокупности бесконечного объема) (рис. 8.1). Скопление вариант в трех осях (оси признаков x, y и частоты а) образует весьма странный "бугор", растянутое в пространстве трехмерное нормальное распределение. Однако в реальности такой идеальной картины получить никогда не удается, приходится ориентироваться только на плоскую фигуру рассеяния немногочисленных вариант.
Если область, занятую вариантами, очертить по периферии плавной линией, мы получим вытянутую фигуру, эллипс, ограничивающий область рассеяния вариант, эллипс рассеяния. Эллипс рассеяния – это область распространения вариант одной совокупности.
Можно видеть, что в нашем случае признаки связаны друг с другом – есть общая тенденция: чем больше длина тела, тем больше вес, хотя эта зависимость и не очень жесткая, но размыта индивидуальными особенностями.

Рис. 8.1. Двумерное распределение
Таблица 8.1
Задача Содержание задачи Методы
Доказать зависимость одного признака
от другого Признак x служит
доминирующим фактором для признака y Регрессионный и дисперсионный и корреляционный анализы
Доказать зависимость одной переменной от нескольких других Переменные x1, x2, … влияют на признак y Множественная корреляция,
регрессия
Доказать взаимозависимость двух признаков Признак x служит доминирующим фактором для признака y, и наоборот Корреляционный анализ
Доказать связь двух признаков, исключив влияние третьего Признак z служит доминирующим фактором для признаков x и y Метод частной корреляции
Доказать зависимость неколичественных признаков Изменчивость признаков сопряжена Коэффициент Спирмена
Итак, в двумерном распределении проявляются два эффекта: синхронное изменение двух признаков и размывание этой синхронности, т. е. действие факторов доминирующих и случайных: доминирующий фактор (фактор сопряжения признаков) действует вдоль оси эллипса, случайные факторы – поперек оси, размывая взаимозависимость y и x. Проблема изучения зависимости распадается на ряд частных задач (табл. 8.1).

Ви переглядаєте статтю (реферат): «Задача "найти зависимость между двумя признаками"» з дисципліни «Введення в кількісну біологію»

Заказать диплом курсовую реферат
Реферати та публікації на інші теми: Організація готівкових грошових розрахунків
ФОРМУВАННЯ ТОВАРНОГО АСОРТИМЕНТУ
Іноземні інвестиції
Якість створення продукту
Мотивація інвестиційної діяльності


Категорія: Введення в кількісну біологію | Додав: koljan (11.01.2013)
Переглядів: 611 | Рейтинг: 0.0/0
Всього коментарів: 0
Додавати коментарі можуть лише зареєстровані користувачі.
[ Реєстрація | Вхід ]

Онлайн замовлення

Заказать диплом курсовую реферат

Інші проекти




Діяльність здійснюється на основі свідоцтва про держреєстрацію ФОП