Сравнение двух выборок в целом (непараметрические критерии)
Описанные выше статистические критерии (T, F и др.) относятся к параметрическим, так как используют стандартные параметры распределений (М, S, n). Они связаны с законом нормального распределения и применяются для оценки расхождения между генеральными параметрами по выборочным показателям сравниваемых совокупностей. Существенным достоинством параметрических критериев служит их большая статистическая мощность, т. е. широкие разрешающие возможности, а недостатком – трудоемкость расчетов, неприменимость к распределениям, сильно отклоняющимся от нормального, а также при исследовании качественных признаков. Поэтому, наряду с параметрическими критериями, для ориентировочной оценки расхождений между выборками (особенно небольшими) применяются так называемые непараметрические критерии, ориентированные в первую очередь на исследование соотношений рангов исходных значений вариант (рассмотрение всех видов непараметрических критериев не входит в наши задачи). Они позволяют сравнивать выборки по качественным признакам, значения которых не имеют числового представления, но которые можно ранжировать. Ранг – это число натурального ряда, которым обозначается порядковый номер каждого члена упорядоченной совокупности вариант. К рангам неприложимы обычные арифметические действия, поэтому вычисления конструкции непараметрических критериев отличаются простотой. Вся процедура состоит из трех этапов – упорядочивание и ранжирование вариант, подсчет сумм рангов в соответствии с правилами данного критерия, сравнение полученной величины с табличным значением критерия. При этом с параметрическими критериями их роднит общая идеологическая подоплека. Нулевая гипотеза, как правило, состоит в том, что сравниваемые выборки взяты из одной и той же генеральной совокупности, значит, характер распределения вариант в этих выборках должен быть сходным. Поскольку вместо самих значений вариант используются ранги, все непараметрические методы исследуют один вопрос, насколько равномерно варианты разных выборок "перемешаны" между собой. Если варианты разных выборок более или менее регулярно чередуются в общем упорядоченном ряду, значит, они распределены сходным образом и отличий между совокупностями нет. Если же выборки пересекаются не полно (смешиваются только краями распределений, либо одна поглощает другую), то становится ясно, что эти выборки взяты из разных генеральных совокупностей (со смещенными центрами или разными дисперсиями). Среди множества известных методов можно выделить критерий Уилкоксона – Манна – Уитни (довольно точный, но не очень простой для вычислений), критерий Т Уайта (менее точный, но более простой), критерий ( (ламбда) Колмогорова – Смирнова (ориентирован на сравнение объемных выборок) и критерий Q Розенбаума (самый простой для расчетов, но и не очень точный).
Ви переглядаєте статтю (реферат): «Сравнение двух выборок в целом (непараметрические критерии)» з дисципліни «Введення в кількісну біологію»