Частный случай распределения альтернативного и полиномиального. Равномерное распределение характеризуется одинаковой частотой встречаемости всех значений дискретного признака (p = q для двух классов или p1 = p2 = … = pj … = pk для нескольких классов). Такой тип распределения можно использовать для формулирования гипотез при анализе частот генов и фенов в популяциях, при подсчете тест-организмов, выживших в токсикометрическом эксперименте, и т. п. В частности, можно предположить, что ветви дерева могут равномерно располагаться по сторонам света (рис. 3.8).
Рис. 3.8. Предположительно равномерное распределение числа ветвей ели по секторам азимута (º)
Помимо рассмотренных четырех типов распределения для описания эмпирических совокупностей предложено множество других моделей, основанных на других принципах и дающих нередко более точные оценки параметров. Для описания природных явлений более реалистичные основания, чем биномиальное, имеет распределение гипергеометрическое, оно не предполагает возврата объектов каждой пробы обратно в изучаемую совокупность. Распределение негативное биномиальное подходит для случая, когда вероятности элементарных событий (p и q) не постоянны, в отличие от биномиального распределения. Распределения Максвелла и Рэлея имеют умеренную правостороннюю асимметрию и описывают поведение непрерывных положительных случайных величин. Распределения Парето и показательное пригодны для описания резко правосторонне асимметричных вариационных рядов с перепадом частот. Распределение логнормальное, или логарифмически нормальное, характеризуется тем, что логарифмы исходных значений выборки образуют правильное нормальное распределение; эта модель подходит для описания признаков, имеющих распределения с умеренной правосторонней асимметрией, это в первую очередь концентрации веществ в различных средах, т. е. гидрохимические, физиологические и биохимические показатели.
Ви переглядаєте статтю (реферат): «Равномерное распределение» з дисципліни «Введення в кількісну біологію»