Наблюдается для качественных признаков, имеющих не два альтернативных свойства, но несколько возможных проявлений качества (k>2). Примеры полиморфизма популяций – как раз из этой области. В их числе варианты окраски покровов и волос, типы рисунков в определенных областях тела, способы жилкования листьев растений или крыльев насекомых, варианты расположения и формы щитков рептилий и другие проявления множественности фенотипов особей. Формализуя описание, укажем, что в одной пробе содержится одна варианта (m = 1), но типов вариант (морф, фенотипов) больше, чем два (k>2). Примером полиномиального (иначе – мультиномиального) распределения может служить встречаемость 4 фенов головы живородящей ящерицы – 4 вариантов контакта лобно-носового, предлобных и лобного щитков (рис. 3.7). Лучше всего выборка может быть представлена вариационным рядом – частотами (pj) встречаемости в популяции особей с данным (j-м) проявлением качественного признака и общим числом морф (k). Для более емкого представления ряда используется величина "среднее число фенотипов", учитывающая характер распределения частот между разными морфами: μ = Σ(pj)², статистическая ошибка показателя равна: . Среднее число фенотипов (μ) равно числу фенотипов (k) только тогда, когда частоты всех фенотипов одинаковы (p1 = p2 = … = pj … = pk), и меньше во всех других случаях.
Рис. 3.7. Полиномиальное распределение (4 фена головы живородящей ящерицы). По оси ординат – частости фенов среди 64 сеголетков, отловленных под Петрозаводском
Для полиномиального распределения предлагается еще одна характеристика – "доля редких морф": h = 1– μ∙k, статистическая ошибка показателя равна: . Доля редких фенотипов равна нулю при равенстве частот всех морф и отличается от нуля при других вариантах распределения.
Ви переглядаєте статтю (реферат): «Полиномиальное распределение» з дисципліни «Введення в кількісну біологію»