Наиболее характерный тип распределения непрерывных случайных величин, из него можно вывести (к нему сводятся) все остальные. Распределение симметрично, причем крайние значения (наибольшие и наименьшие) появляются редко, но чем ближе значения признака к центру (к средней арифметической), тем оно чаще встречается.
Рис. 3.3. Нормальное распределение с параметрами п = 63, M = 9.3, S = 0.79. По оси абсцисс – вес тела землероек-бурозубок, по оси ординат – табличные значения для нормального распределения. Рассчитать ординаты нормальной кривой для конкретного значения xi можно по формуле: . Если откладывать на оси абсцисс результаты измерений, а на оси ординат число случаев (частоту получения данного результата измерений), то образуется кривая нормального распределения (кривая Гаусса), характеризующаяся симметричной колоколообразной формой (рис. 3.3). Точная формула кривой плотности вероятности нормального распределения приведена выше. Одно из важных его свойств состоит в том, что среднее квадратичное отклонение примерно 4 раза укладывается в размахе изменчивости признака и по величине значительно уступает средней. Геометрически стандартное отклонение равно расстоянию от центра кривой распределения до точки перегиба кривой. Примеры расчета параметров нормального распределения (средней M, дисперсии S², асимметрии A и эксцесса E) приведены выше.
Ви переглядаєте статтю (реферат): «Нормальное распределение» з дисципліни «Введення в кількісну біологію»