Генеральная совокупность – все варианты одного типа. В предметной биологии это понятие можно интерпретировать как мыслимое множество вариант, сформированных при одинаковых (внешних и внутренних) условиях. Например, чистая линия рачков-дафний, выращенных при температуре помещения 20ºС. При этом вполне может статься, что кроме двух выборок в природе не существует других дафний, выращенных при таких условиях. Все равно в определении генеральной совокупности важно не реальное ее существование, но мыслимое однообразие условий, порождающих выборки. Так, можно вырастить 20 дафний при температуре 30ºС; они также составят выборку из генеральной совокупности, которой физически не существует. Важнейшее свойство генеральной совокупности состоит в том, что на всех ее вариантах сказываются одни и те же систематические и случайные факторы, их набор уникален для данной генеральной совокупности. Для другой генеральной совокупности он будет другим. Мысленно меняя условия, можно сформировать бесконечное множество бесконечных по объему генеральных совокупностей, отличающихся нюансами условий своего формирования. Вот почему статистические задачи вполне корректно можно ставить и в терминах генеральной совокупности (сравнение выборок из разных генеральных совокупностей), и в терминах факториальной обусловленности (сравнение выборок, сформированных при действии разных факторов). Кстати сказать, мыслимая бесконечность генеральной совокупности означает, что мы никогда не может познать ее до конца, в действительности мы всегда имеем дело с выборками. Исследовать свойства бесконечного числа значений случайной величины вполне доступно математике, которая на основании открытых законов их поведения предлагает эффективные процедуры для описания и сравнения случайных величин, наблюдаемых в действительности. Выборочная совокупность, выборка – это множество вариант одного типа, ограниченное способом отбора (методами получения вариант), изъятое из генеральной совокупности. Отличие выборок от генеральной совокупности состоит не только в разных объемах, или в реальности первых и сюрреалистичности вторых. Дело в том, что в отдельной выборке в полной мере не могут проявиться все факторы, действующие в генеральной совокупности. Если доминирующий фактор действует на каждую варианту строго одинаковым образом, то случайные факторы сказываются на значениях вариант по-разному: на одну варианту сильно ("большая прибавка значения"), на другую – слабо ("малая прибавка"), на одну сильно повлияет много случайных факторов, на другую – мало и т. д. В результате такого влияния варианты, оставаясь в целом единообразными (влияние доминирующих причин), все же будут отличаться друг от друга (влияние случайных причин). При подсчете средней арифметической разнонаправленные случайные воздействия в целом нейтрализуют друг друга, но до конца – никогда. Все равно в разных выборках какие-то случайные факторы будут выражены сильнее, чем остальные. Каждая новая выборка обязательно будет отличаться от предыдущей в силу случайности, варианты новой выборки буду нести одинаковый отпечаток действия доминирующих факторов, но разные следы действия случайных факторов. По этой причине параметры (M, S) разных выборок из одной генеральной совокупности никогда не совпадут ни друг с другом, ни со значениями генеральных параметров (обычно обозначаемых буквами μ, σ), они будут немного отличаться, смещаясь относительно друг друга и варьируя вокруг генеральной средней. Отличие генеральных оценок от выборочных состоит в том, что в первом случае они рассчитаны по всем вариантам, а во втором – по ограниченному их числу. Интуитивно понятно, что чем меньше объем выборок, тем менее точным будут выборочные оценка генеральных параметров и, напротив, чем больше выборка, тем ближе выборочные средние и дисперсии лежат к генеральным значениям. Это явление называется "закон больших чисел": с ростом числа наблюдений значения выборочных параметров стремятся воспроизвести генеральные.
Ви переглядаєте статтю (реферат): «Генеральная совокупность и выборка» з дисципліни «Введення в кількісну біологію»