Важным этапом прогнозирования социально-экономических явлений является оценка точности и надежности прогнозов. Эмпирической мерой точности прогноза, служит величина его ошибки, которая определяется как разность между прогнозными ( ) и фактическими (уt) значениями исследуемого показателя. Данный подход возможен только в двух случаях: а) период упреждения известен, уже закончился и исследователь располагает необходимыми фактическими значениями прогнозируемого показателя; б) строится ретроспективный прогноз, то есть рассчитываются прогнозные значения показателя для периода времени за который уже имеются фактические значения. Это делается с целью проверки разработанной методики прогнозирования. В данном случае вся имеющаяся информация делится на две части в соотношении 2/3 к 1/3. Одна часть информации (первые 2/3 от исходного временного ряда) служит для оценивания параметров модели прогноза. Вторая часть информации (последняя 1/3 части исходного ряда) служит для реализации оценок прогноза. Полученные, таким образом, ретроспективно ошибки прогноза в некоторой степени характеризуют точность предлагаемой и реализуемой методики прогнозирования. Однако величина ошибки ретроспективного прогноза не может в полной мере и окончательно характеризовать используемый метод прогнозирования, так как она рассчитана только для 2/3 имеющихся данных, а не по всему временному ряду. В случае если, ретроспективное прогнозирование осуществлять по связным и многомерным динамическим рядам, то точность прогноза, соответственно, будет зависеть от точности определения значений факторных признаков, включенных в многофакторную динамическую модель, на всем периоде упреждения. При этом, возможны следующие подходы к прогнозированию по связным временным рядам: можно использовать как фактические, так и прогнозные значения признаков. Все показатели оценки точности статистических прогнозов условно можно разделить на три группы: аналитические; сравнительные; качественные. Аналитические показатели точности прогноза позволяют количественно определить величину ошибки прогноза. К ним относятся следующие показатели точности прогноза: Абсолютная ошибка прогноза ((*) определяется как разность между эмпирическим и прогнозным значениями признака и вычисляется по формуле: , (16.1) где уt – фактическое значение признака; - прогнозное значение признака.
Относительная ошибка прогноза (d*отн) может быть определена как отношение абсолютной ошибки прогноза ((*): к фактическому значению признака (уt): (16.2) - к прогнозному значению признака ( ) (16.3) Абсолютная и относительная ошибки прогноза являются оценкой проверки точности единичного прогноза, что снижает их значимость в оценке точности всей прогнозной модели, так как на изучаемое социально-экономическое явление подвержено влиянию различных факторов внешнего и внутреннего свойства. Единично удовлетворительный прогноз может быть получен и на базе реализации слабо обусловленной и недостаточно адекватной прогнозной модели и наоборот – можно получить большую ошибку прогноза по достаточно хорошо аппроксимирующей модели. Поэтому на практике иногда определяют не ошибку прогноза, а некоторый коэффициент качества прогноза (Кк), который показывает соотношение между числом совпавших (с) и общим числом совпавших (с) и несовпавших (н) прогнозов и определяется по формуле: (16.4) Значение Кк = 1 означает, что имеет место полное совпадение значений прогнозных и фактических значений и модель на 100% описывает изучаемое явление. Данный показатель оценивает удовлетворительный вес совпавших прогнозных значений в целом по временному ряду и изменяющегося в пределах от 0 до 1. Следовательно, оценку точности получаемых прогнозных моделей целесообразно проводить по совокупности сопоставлений прогнозных и фактических значений изучаемых признаков. Средним показателем точности прогноза является средняя абсолютная ошибка прогноза ( ), которая определяется как средняя арифметическая простая из абсолютных ошибок прогноза по формуле вида: , (16.5) де n – длина временного ряда. Средняя абсолютная ошибка прогноза показывает обобщенную характеристику степени отклонения фактических и прогнозных значений признака и имеет ту же размерность, что и размерность изучаемого признака. Для оценки точности прогноза используется средняя квадратическая ошибка прогноза, определяемая по формуле: (16.6) Размерность средней квадратической ошибки прогноза также соответствует размерности изучаемого признака. Между средней абсолютной и средней квадратической ошибками прогноза существует следующее примерное соотношение: (16.7) Недостатками средней абсолютной и средней квадратической ошибками прогноза является их существенная зависимость от масштаба измерения уровней изучаемых социально-экономических явлений. Поэтому на практике в качестве характеристики точности прогноза определяют среднюю ошибку аппроксимации, которая выражается в процентах относительно фактических значений признака, и определяется по формуле вида: (16.8) Данный показатель является относительным показателем точности прогноза и не отражает размерность изучаемых признаков, выражается в процентах и на практике используется для сравнения точности прогнозов полученных как по различным моделям, так и по различным объектам. Интерпретация оценки точности прогноза на основе данного показателя представлена в следующей таблице:
,% Интерпретация точности < 10 10 – 20 20 – 50 > 50 Высокая Хорошая Удовлетворительная Не удовлетворительная
В качестве сравнительного показателя точности прогноза используется коэффициент корреляции между прогнозными и фактическими значениями признака, который определяется по формуле: , (16.9) где - средний уровень ряда динамики прогнозных оценок. Используя данный коэффициент в оценке точности прогноза следует помнить, что коэффициент парной корреляции в силу своей сущности отражает линейное соотношение коррелируемых величин и характеризует лишь взаимосвязь между временным рядом фактических значений и рядом прогнозных значений признаков. И даже если коэффициент корреляции R = 1, то это еще не предполагает полного совпадения фактических и прогнозных оценок, а свидетельствует лишь о наличии линейной зависимости между временными рядами прогнозных и фактических значений признака. Одним из показателей оценки точности статистических прогнозов является коэффициент несоответствия (КН), который был предложен Г. Тейлом и может рассчитываться в различных модификациях: Коэффициент несоответствия (КН1), определяемый как отношение средней квадратической ошибки к квадрату фактических значений признака: (16.10) КН = о, если , то есть полное совпадение фактических и прогнозных значений признака. КН = 1, если при прогнозировании получают среднюю квадратическую ошибку адекватную по величине ошибке, полученной одним из простейших методов экстраполяции неизменности абсолютных цепных приростов. КН > 1, когда прогноз дает худшие результаты, чем предположение о неизменности исследуемого явления. Верхней границы коэффициент несоответствия не имеет. 2.Коэффициент несоответствия КН2 определяется как отношение средней квадратической ошибки прогноза к сумме квадратов отклонений фактических значений признака от среднего уровня исходного временного ряда за весь рассматриваемый период: , (16.11) где - средний уровень исходного ряда динамики. Если КН > 1, то прогноз на уровне среднего значения признака дал бы лучший результат, чем имеющийся прогноз. 3.Коэффициент несоответствия (КН3), определяемый как отношение средней квадратической ошибке прогноза к сумме квадратов отклонений фактических значений признака от теоретических, выравненных по уравнению тренда: , (16.12) где - теоретические уровни временного ряда, полученные по модели тренда. Если КН > 1, то прогноз методом экстраполяции тренда дает хороший результат.
Ви переглядаєте статтю (реферат): «Оценка точности и надежности прогнозов» з дисципліни «Бізнес-статистика та прогнозування»