ДИПЛОМНІ КУРСОВІ РЕФЕРАТИ


ИЦ OSVITA-PLAZA

Реферати статті публікації

Пошук по сайту

 

Пошук по сайту

Головна » Реферати та статті » Статистика » Бізнес-статистика та прогнозування

Оценка точности и надежности прогнозов
Важным этапом прогнозирования социально-экономических явлений является оценка точности и надежности прогнозов.
Эмпирической мерой точности прогноза, служит величина его ошибки, которая определяется как разность между прогнозными ( ) и фактическими (уt) значениями исследуемого показателя. Данный подход возможен только в двух случаях:
а) период упреждения известен, уже закончился и исследователь располагает необходимыми фактическими значениями прогнозируемого показателя;
б) строится ретроспективный прогноз, то есть рассчитываются прогнозные значения показателя для периода времени за который уже имеются фактические значения. Это делается с целью проверки разработанной методики прогнозирования.
В данном случае вся имеющаяся информация делится на две части в соотношении 2/3 к 1/3. Одна часть информации (первые 2/3 от исходного временного ряда) служит для оценивания параметров модели прогноза. Вторая часть информации (последняя 1/3 части исходного ряда) служит для реализации оценок прогноза.
Полученные, таким образом, ретроспективно ошибки прогноза в некоторой степени характеризуют точность предлагаемой и реализуемой методики прогнозирования. Однако величина ошибки ретроспективного прогноза не может в полной мере и окончательно характеризовать используемый метод прогнозирования, так как она рассчитана только для 2/3 имеющихся данных, а не по всему временному ряду.
В случае если, ретроспективное прогнозирование осуществлять по связным и многомерным динамическим рядам, то точность прогноза, соответственно, будет зависеть от точности определения значений факторных признаков, включенных в многофакторную динамическую модель, на всем периоде упреждения. При этом, возможны следующие подходы к прогнозированию по связным временным рядам: можно использовать как фактические, так и прогнозные значения признаков.
Все показатели оценки точности статистических прогнозов условно можно разделить на три группы:
аналитические;
сравнительные;
качественные.
Аналитические показатели точности прогноза позволяют количественно определить величину ошибки прогноза. К ним относятся следующие показатели точности прогноза:
Абсолютная ошибка прогноза ((*) определяется как разность между эмпирическим и прогнозным значениями признака и вычисляется по формуле:
, (16.1)
где уt – фактическое значение признака;
- прогнозное значение признака.

Относительная ошибка прогноза (d*отн) может быть определена как отношение абсолютной ошибки прогноза ((*):
к фактическому значению признака (уt):
(16.2)
- к прогнозному значению признака ( )
(16.3)
Абсолютная и относительная ошибки прогноза являются оценкой проверки точности единичного прогноза, что снижает их значимость в оценке точности всей прогнозной модели, так как на изучаемое социально-экономическое явление подвержено влиянию различных факторов внешнего и внутреннего свойства. Единично удовлетворительный прогноз может быть получен и на базе реализации слабо обусловленной и недостаточно адекватной прогнозной модели и наоборот – можно получить большую ошибку прогноза по достаточно хорошо аппроксимирующей модели.
Поэтому на практике иногда определяют не ошибку прогноза, а некоторый коэффициент качества прогноза (Кк), который показывает соотношение между числом совпавших (с) и общим числом совпавших (с) и несовпавших (н) прогнозов и определяется по формуле:
(16.4)
Значение Кк = 1 означает, что имеет место полное совпадение значений прогнозных и фактических значений и модель на 100% описывает изучаемое явление. Данный показатель оценивает удовлетворительный вес совпавших прогнозных значений в целом по временному ряду и изменяющегося в пределах от 0 до 1.
Следовательно, оценку точности получаемых прогнозных моделей целесообразно проводить по совокупности сопоставлений прогнозных и фактических значений изучаемых признаков.
Средним показателем точности прогноза является средняя абсолютная ошибка прогноза ( ), которая определяется как средняя арифметическая простая из абсолютных ошибок прогноза по формуле вида:
, (16.5)
де n – длина временного ряда.
Средняя абсолютная ошибка прогноза показывает обобщенную характеристику степени отклонения фактических и прогнозных значений признака и имеет ту же размерность, что и размерность изучаемого признака.
Для оценки точности прогноза используется средняя квадратическая ошибка прогноза, определяемая по формуле:
(16.6)
Размерность средней квадратической ошибки прогноза также соответствует размерности изучаемого признака. Между средней абсолютной и средней квадратической ошибками прогноза существует следующее примерное соотношение:
(16.7)
Недостатками средней абсолютной и средней квадратической ошибками прогноза является их существенная зависимость от масштаба измерения уровней изучаемых социально-экономических явлений.
Поэтому на практике в качестве характеристики точности прогноза определяют среднюю ошибку аппроксимации, которая выражается в процентах относительно фактических значений признака, и определяется по формуле вида:
(16.8)
Данный показатель является относительным показателем точности прогноза и не отражает размерность изучаемых признаков, выражается в процентах и на практике используется для сравнения точности прогнозов полученных как по различным моделям, так и по различным объектам. Интерпретация оценки точности прогноза на основе данного показателя представлена в следующей таблице:

,% Интерпретация точности
< 10
10 – 20
20 – 50
> 50 Высокая
Хорошая
Удовлетворительная
Не удовлетворительная

В качестве сравнительного показателя точности прогноза используется коэффициент корреляции между прогнозными и фактическими значениями признака, который определяется по формуле:
, (16.9)
где - средний уровень ряда динамики прогнозных оценок.
Используя данный коэффициент в оценке точности прогноза следует помнить, что коэффициент парной корреляции в силу своей сущности отражает линейное соотношение коррелируемых величин и характеризует лишь взаимосвязь между временным рядом фактических значений и рядом прогнозных значений признаков. И даже если коэффициент корреляции R = 1, то это еще не предполагает полного совпадения фактических и прогнозных оценок, а свидетельствует лишь о наличии линейной зависимости между временными рядами прогнозных и фактических значений признака.
Одним из показателей оценки точности статистических прогнозов является коэффициент несоответствия (КН), который был предложен Г. Тейлом и может рассчитываться в различных модификациях:
Коэффициент несоответствия (КН1), определяемый как отношение средней квадратической ошибки к квадрату фактических значений признака:
(16.10)
КН = о, если , то есть полное совпадение фактических и прогнозных значений признака.
КН = 1, если при прогнозировании получают среднюю квадратическую ошибку адекватную по величине ошибке, полученной одним из простейших методов экстраполяции неизменности абсолютных цепных приростов.
КН > 1, когда прогноз дает худшие результаты, чем предположение о неизменности исследуемого явления. Верхней границы коэффициент несоответствия не имеет.
2.Коэффициент несоответствия КН2 определяется как отношение средней квадратической ошибки прогноза к сумме квадратов
отклонений фактических значений признака от среднего уровня исходного временного ряда за весь рассматриваемый период:
, (16.11)
где - средний уровень исходного ряда динамики.
Если КН > 1, то прогноз на уровне среднего значения признака дал бы лучший результат, чем имеющийся прогноз.
3.Коэффициент несоответствия (КН3), определяемый как отношение средней квадратической ошибке прогноза к сумме квадратов отклонений фактических значений признака от теоретических, выравненных по уравнению тренда:
, (16.12)
где - теоретические уровни временного ряда, полученные по
модели тренда.
Если КН > 1, то прогноз методом экстраполяции тренда дает хороший результат.

Ви переглядаєте статтю (реферат): «Оценка точности и надежности прогнозов» з дисципліни «Бізнес-статистика та прогнозування»

Заказать диплом курсовую реферат
Реферати та публікації на інші теми: Проектне фінансування інвестиційних проектів
Ознайомлення з об’єктом аудиту
Розряди іменників за значенням
ПОНЯТТЯ, ПРИЗНАЧЕННЯ ТА КЛАСИФІКАЦІЯ КОМЕРЦІЙНИХ БАНКІВ
Стандартизація в галузі безпеки телекомунікаційних систем


Категорія: Бізнес-статистика та прогнозування | Додав: koljan (24.09.2012)
Переглядів: 2392 | Рейтинг: 0.0/0
Всього коментарів: 0
Додавати коментарі можуть лише зареєстровані користувачі.
[ Реєстрація | Вхід ]

Онлайн замовлення

Заказать диплом курсовую реферат

Інші проекти




Діяльність здійснюється на основі свідоцтва про держреєстрацію ФОП