ДИПЛОМНІ КУРСОВІ РЕФЕРАТИ


ИЦ OSVITA-PLAZA

Реферати статті публікації

Пошук по сайту

 

Пошук по сайту

Головна » Реферати та статті » Фінанси » Фінансова математика

Покупка и продажа финансовых инструментов, приносящих простые проценты
Если депозитный сертификат или другой подобного рода краткосрочный инструмент через некоторое время после его покупки и до наступления срока погашения вновь продан, то эффективность (доходность) такой операции можно измерить в виде ставки простых или сложных процентов. Финансовая эффективность такой операции зависит от сроков актов купли-продажи до погашения инструмента, цен или процентных ставок, существующих на денежном рынке в моменты покупки и продажи.
Несколько слов о депозитных сертификатах. Они, как известно, выпускаются банками как кратко-, так и среднесрочные финансовые инструменты, продаются эмитентом в момент выпуска по номиналу (at par) и предусматривают в качестве дохода выплату процентов, начисляемых по простым или сложным ставкам. Проценты чаще всего выплачиваются один раз в конце срока. В случае досрочной продажи сертификата эмитенту иногда предусматриваются штрафные санкции. Например, удержание процентов за один-три месяца. Сертификаты являются объектом инвестиций и обычно могут быть проданы на рынке ценных бумаг.
Сертификат обеспечивает владельцу доходность на уровне объявленной процентной ставки в том случае, когда сертификат находится у владельца полный срок. Иное дело, если этот финансовый инструмент продается на рынке ценных бумаг по рыночной цене.
Обратимся к наиболее распространенному виду сертификата — с разовой выплатой процентов — и рассмотрим три возмож-
219

ных варианта операции купли-продажи этого инструмента по срокам:
а) покупается по номиналу, продается за д2 дней до погаше
ния;
б) покупается после выпуска и погашается в конце срока;
в) покупается и продается в пределах объявленного срока.
Для варианта а получим знакомое равенство (10.7):

л i +

д, дч

*'эп| = />2-

Однако символы здесь имеют другое содержание, а именно: Рх — номинал, Р2 — цена при продаже (определяется рыночной ставкой процента), д,, д2 — сроки до погашения.
Доходность владения сертификатом в течение д{ — д2 дней определяется формулой (10.8), если расчет исходит из цен сертификата. Если же в качестве исходных параметров берутся процентные ставки #, и /2 (/, — объявленная ставка сертификата, /2 — ставка рынка в момент продажи), то
1 «i .

-1

d, -d2

(10.12)

В случае когда измерителем эффективности выступает сложная процентная ставка и заданы цены, получим формулу, аналогичную (10.10). Наконец, если расчет основан на уровнях процентных ставок, то

U + *2'*2 J

(10.13)

Отметим, что доходность операции имеет место только в том случае, когда d{i{>d2i2. Предельное значение ставки /', при котором инвестор получит доход, равно

/, <

в|/

220

Перейдем теперь к варианту б. Здесь справедливо равенство
' = л(1 + 4ы
-^
л-1 I = Р 11 +
AI +

где Рх — номинал, Р2 — цена приобретения, / — объявленная процентная ставка.
Время
Контур операции для данного уравнения приведен на рис. 10.3. s
Рис. 10.3
Из приведенного выше равенства получим значение /эп при заданной величине Р2:

1 д\ • ! + -£'■

-1

(10.14)

Если в качестве измерителя эффективности принята ставка сложных процентов, то
ЛИ + 4/
л.
К
-1.
(10.15)
Рассмотрим вариант в. Здесь покупка производится спустя некоторое время после выпуска сертификата, а его продажа — до момента погашения. В этом случае опять приходим к уравнению (10.7), в котором Р{ означает цену приобретения (а не номинал). Отсюда для расчета /эп и /э пригодны формулы (10.8M10.il).
221

ПРИМЕР 10.5. Операция заключается в покупке сертификата за 1020 тыс. руб. за 160 дней до его выкупа. Инструмент был продан за 1060 тыс. руб. через 90 дней. Какова доходность операции, измеренная в виде простой и сложной ставок? Исходные данные Р, = 1020, Р2 = 1060, д^ = 160, д2 = 70, д1 - д2 = 90.
Пусть временная база простых процентов равна 365 дням, тогда по формуле (10.8) находим

1060 - 1020 365
90
1020
х -тт~ = 0,159, или 15,9%.

Эквивалентная сложная ставка равна

1 +

90 365

х 0,159

365/90

- 1 =0,169, или 16,9%.

Величину /э можно определить и непосредственно по формуле (10.10):

'э =

1060
1020

365/90

- 1 =0,169.

ПРИМЕР 10.6. Финансовый инструмент, приносящий постоянный процент, куплен за 200 дней до срока его погашения и продан через 100 дней. В момент покупки процентная ставка на рынке была равна 10%, в момент продажи — 9,8%. Доходность операции купли-продажи в виде годовой ставки сложных процентов равна согласно (10.13)

_ 365 + 200x0,1 ^365/ioo 'э " I 365 + 100 х 0,098

- 1 =0,103, или 10,3%.

ПРИМЕР 10.7. Сертификат с номиналом 100 тыс. руб. с объявленной доходностью 12% годовых (простые проценты) сроком 720 дней куплен за 110 тыс. руб. за 240 дней до его оплаты. Какова доходность инвестиций в виде /э?
Если К = 360 дней, то по формуле (10.15) получим

100-

720 1 +—~-х0,12 360
110

365/240

- 1 =0,19985, или 19,985%.

Ви переглядаєте статтю (реферат): «Покупка и продажа финансовых инструментов, приносящих простые проценты» з дисципліни «Фінансова математика»

Заказать диплом курсовую реферат
Реферати та публікації на інші теми: Світ тісний. Снігопади, що пройшли цієї зими по всій країні, знов...
МОНЕТИЗАЦІЯ БЮДЖЕТНОГО ДЕФІЦИТУ ТА ВАЛОВОГО ВНУТРІШНЬОГО ПРОДУКТУ...
Аудит оборотних засобів, інших необоротних матеріальних активів. ...
Аудит акцизного збору
Баланс


Категорія: Фінансова математика | Додав: koljan (20.10.2011)
Переглядів: 960 | Рейтинг: 0.0/0
Всього коментарів: 0
Додавати коментарі можуть лише зареєстровані користувачі.
[ Реєстрація | Вхід ]

Онлайн замовлення

Заказать диплом курсовую реферат

Інші проекти




Діяльність здійснюється на основі свідоцтва про держреєстрацію ФОП