Условия, необходимые для возникновения и развития жизни на планетах
Для эволюции живых организмов от простейших форм (вирусы, бактерии) к разумным существам необходимы огромные интервалы времени, так как «движущей силой» такой эволюции являются мутации и естественный отбор — процессы, носящие случайный, статистический характер. Именно через большое количество случайных процессов реализуется закономерное развитие от низших форм жизни к высшим. На примере нашей планеты Земли мы знаем, что этот интервал времени, по-видимому, превосходит 3,5 миллиарда лет. Поэтому только на планетах, обращающихся вокруг достаточно старых звезд, мы можем ожидать присутствия высокоорганизованных живых существ. Отсюда сразу же следует естественный вывод, что высокоорганизованная (в частности, разумная) жизнь может быть только на планетах, обращающихся вокруг звезд, спектральный класс которых более «поздний», чем F0 (см. табл. 2). С другой стороны, довольно ненадежные аргументы, основанные на анализе особенностей вращения звезд вокруг своих осей и статистике кратных звездных систем, говорят о том, что только у звезд более «поздних» классов, чем F5, можно ожидать планетных систем. Здесь мы еще раз должны подчеркнуть, что при современном состоянии астрономии можно говорить только об аргументах в пользу гипотезы множественности планетных систем. Строгим доказательством этого важнейшего утверждения астрономия пока не располагает (см. гл. 10). С этой весьма существенной оговоркой мы будем в дальнейшем считать, что некоторое, пока еще не известное нам количество звезд главной последовательности, спектральные классы которых более «поздние», чем F5, имеют планетные системы. С другой стороны, имеются основания полагать, что у звезд «первого поколения» (субкарликов) планет типа Земли быть не может, так как среда, из которой они образовались, была весьма бедна тяжелыми элементами. На это обстоятельство обратил внимание Э. А. Дибай. Для возникновения и развития жизни на планете необходимо, чтобы выполнялся ряд условий весьма общего характера. Совершенно очевидно, что далеко не на всякой планете может возникнуть жизнь. Хорошим примером является Луна, практически лишенная атмосферы и полностью лишенная водной оболочки — гидросферы. Конечно, при таких условиях говорить о какой бы то ни было жизни на Луне не приходится. Жизнедеятельность любого организма есть прежде всего совокупность различных согласованных между собой сложных химических процессов. Жизнь может возникнуть только тогда, когда на планете уже имеются достаточно сложные молекулярные соединения. Само образование таких соединений, химические реакции между ними, в конечном итоге давшие начало живому веществу, и жизнедеятельность образовавшихся на планете организмов требуют, в частности, подходящих температурных условий. Слишком высокие и слишком низкие температуры исключают возможность возникновения и развития жизни. В равной степени губительны для возникновения и развития жизни очень резкие колебания температуры. Мы можем представить себе вокруг каждой звезды, имеющей планетную систему, область или зону, где температурные условия на планетах не исключают возникновения и развития жизни. Ясно, что в достаточной близости от звезды температуры планет будут слишком высокими для возникновения жизни. Хорошей иллюстрацией сказанному является Меркурий, температура обращенной к Солнцу части которого выше температуры плавления свинца. На достаточно большом удалении от звезды температура планет будет слишком низкой. Нелегко себе представить, например, жизнь на Уране и Нептуне, температура поверхностей которых –200 °С. Нельзя, однако, недооценивать огромную приспособляемость («адаптацию») живых организмов к неблагоприятным условиям внешней среды. Следует еще заметить, что для жизнедеятельности организмов значительно «опаснее» очень высокие температуры, чем низкие, так как простейшие виды вирусов и бактерий могут, как известно, находиться в состоянии анабиоза при температуре, близкой к абсолютному нулю. Температура планеты определяется прежде всего количеством излучения от звезды, падающим на единицу площади ее поверхности за единицу времени. По этой причине размеры «зон обитаемости» для разных звезд различны. Они тем больше, чем выше светимость звезды, т. е. чем более «ранним» является ее спектральный класс. У красных карликов спектрального класса M, а также поздних подклассов K внешний радиус «зоны обитаемости» становится очень маленьким, меньше, например, радиуса орбиты «нашего» Меркурия. Поэтому вероятность того, что хотя бы одна из планет, обращающихся вокруг таких карликов красных звезд, находится в пределах «зоны обитаемости», как можно думать, невелика. Следует, однако, заметить, что планетные системы, окружающие звезды, могут по своим характеристикам значительно отличаться от единственной планетной системы, которую мы пока знаем, — нашей Солнечной системы. В частности, не исключено, что вокруг красных карликовых звезд планеты могут обращаться по сравнительно небольшим орбитам. Если сделать весьма «оптимистическое» предположение, что планеты, на которых возможна жизнь, имеются у всех звезд главной последовательности, спектральные классы которых более «поздние», чем F5, и более «ранние», чем K5, то окажется, что лишь 1—2% всех звезд в Галактике могут быть «обитаемы». Учитывая, что число всех звезд в нашей звездной системе около 150 млрд., мы приходим к довольно «утешительному» выводу: по крайней мере у миллиарда звезд нашей Галактики могут быть планетные системы, на которых в принципе возможна жизнь. Нужно, впрочем, считаться с еще одним обстоятельством. Как известно, около половины всех звезд входит в состав кратных систем. Представим себе планету в системе двойной звезды. Вообще говоря, ее орбита будет довольно сложной незамкнутой кривой. Вычисление характеристик такой орбиты представляет достаточно трудную математическую задачу. Это так называемая «ограниченная» задача трех тел. По сравнению с общей задачей о движении трех тел, взаимно притягивающихся по закону Ньютона, «ограниченная» задача проще, так как масса планеты ничтожна по сравнению со звездами и не оказывает влияния на движение звезд. Двигаясь по своей сложной орбите, планета временами может приближаться к одной из звезд на небольшие расстояния, а временами удаляться от звезд очень далеко. В соответствии с этим температура поверхности планеты будет меняться в недопустимых для возникновения и развития жизни пределах. Поэтому вначале считали, что около кратных звезд не могут быть обитаемые планеты. Но свыше 30 лет назад Су Шухуанг пересмотрел этот вопрос и показал, что в отдельных случаях может быть такое движение планет по периодическим орбитам, при котором температура их поверхностей меняется в допустимых для развития жизни пределах. Для этого нужно, чтобы относительные орбиты звезд были близки к круговым. На рис. 50 приведены сечения плоскостью некоторых «критических поверхностей» в ограниченной задаче трех тел. Периодические орбиты планет, допускающие развитие жизни, лежат либо внутри поверхности, проходящей через L1, либо снаружи поверхности, проходящей через L2. Если массы обеих звезд одинаковы, то внутри поверхности, проходящей через L1 , орбиты, подходящие для развития жизни, будут существовать при условии, что расстояние между звездами a >> 2 l l/2 ( a выражено в астрономических единицах), где l — светимость каждой из звезд (в единицах светимости Солнца). Когда a станет больше 13 l 1/2, каждую из компонент двойной системы можно рассматривать для интересующей нас задачи как одиночную звезду.
Заметим, что у многих двойных систем расстояние между компонентами превосходит это «критическое» значение. Следовательно, в принципе вокруг достаточно удаленных друг от друга компонент двойной системы, движущихся по почти круговой орбите, возможно наличие обитаемых планет. В случае, когда компоненты двойной системы достаточно близки друг к другу, подходящие периодические орбиты могут быть вне поверхности, проходящей через L2 (рис. 50). Как показывают вычисления Су Шухуанга, при равных массах компонент двойной системы орбиты, подходящие для возникновения и развития жизни, могут быть при условии, что a << 0,4 l 1/2. Таким образом, в области значений 2 l 1/2 > a > 0,4 l 1/2 исключается возможность существования обитаемых планет. Аналогичные результаты можно получить путем вычисления и для более общего случая, когда массы компонент двойной системы не равны. Таким образом, мы должны сделать вывод, что и в кратных звездных системах, в принципе могут быть планеты, температурные условия на которых не исключают возможности возникновения и развития жизни. Следует, однако, отметить, что вероятность существования таких планет около одиночных звезд значительно выше. Впрочем, возможно, что образование кратных звезд и планет суть процессы, взаимно исключающие друг друга. Для оценки количества звезд в Галактике, вокруг которых, как можно полагать, обращаются обитаемые планеты, учет кратных звезд не имеет, конечно, серьезного значения, так как мы едва можем грубо оценить только порядок этой величины. При таких расчетах коэффициент 1,5—2 не играет роли. Другое дело, когда речь идет о вероятности существования обитаемых планет в какой-нибудь совершенно определенной кратной системе, по тем или иным причинам представляющей для нас интерес. Например, одна из ближайших звезд — α Центавра — кратная система. Естественно, что вопрос о возможном наличии в этой системе обитаемых планет представляет для нас особый интерес. α Центавра является тройной системой. Относительная орбита двух наиболее массивных компонент этой системы — эллипс с большой полуосью, равной 23,4 астрономической единицы, и с довольно значительным эксцентриситетом: 0,52. Таким образом, расстояние между двумя главными компонентами достаточно велико, чтобы вокруг каждой из них могли существовать подходящие планетные периодические орбиты (см. выше). Однако большая величина эксцентриситета звездных орбит требует для этого случая специального рассмотрения (напомним, что приведенные результаты вычислений Су Шухуанга относятся к случаю круговых орбит компонент двойной системы). Нужно, впрочем, заметить, что система α Центавра, по-видимому, сравнительно молодая. Входящие в нее звезды, возможно, еще не «сели» на главную последовательность. Поэтому маловероятно, что там могут быть планеты даже с примитивными формами жизни. На рис. 51 приведена фотография пространственной модели ближайших окрестностей Солнечной системы. В соответствующем масштабе изображена сфера радиусом в 5 пк (16,3 светового года), причем Солнце находится в ее центре. Каждый темный шарик этой сферы представляет собой звезду. Относительное пространственное расположение звезд соответствует действительному. Сфера выполнена из плексигласа и имеет диаметр около 130 см, так что в этом масштабе один световой год равен 4 см. Размеры шариков, сделанных из дерева, приблизительно соответствуют светимостям соответствующих звезд.
Всего внутри этой сферы находятся 53 звезды (считая звезды, входящие в состав кратных систем). Справа внизу от Солнца находится самая яркая звезда на небе — Сириус. Рядом с ним виден его крохотный спутник — белый карлик. Справа вверху от Солнца видна другая яркая звезда — Процион. У нее спутник — также белый карлик. Яркая звезда слева от центра — Альтаир. Все эти звезды имеют спектральные классы, более ранние, чем F5. Поэтому, согласно нашей основной гипотезе, вокруг них нельзя ожидать обитаемых планетных систем. Большинство звезд внутри этой сферы — красные карлики низкой светимости. Не считая нашего Солнца, только три звезды из 53 удовлетворяют сформулированным условиям (т. е. они имеют спектральные классы между F5 и K5 и являются одиночными). Это звезды ε Эридана, τ Кита и ε Индейца. Проведенный сейчас анализ модели, изображенной на рис. 51, наглядно демонстрирует, что только несколько процентов звезд могут иметь (но, конечно, отнюдь не обязательно должны иметь) обитаемые планеты. Следует, однако, еще раз подчеркнуть, что в настоящее время мы не можем исключить красные карликовые звезды (которые составляют подавляющее большинство всех звезд) из числа возможных очагов жизни во Вселенной (см. выше). Следует, однако, отметить, что огромное большинство красных карликов обладают высокой активностью (это так называемые «звезды типа UV Кита») что исключает, по-видимому, возможность развития жизни в их окрестностях. Как уже подчеркивалось, для развития жизни на какой-нибудь планете необходимо, чтобы температура последней находилась в определенных допустимых пределах. Этим требованием определяются размеры и само наличие «зон обитаемости». Кроме того, необходимо, чтобы излучение звезды на протяжении многих сот миллионов и даже миллиардов лет оставалось приблизительно постоянным. Например, обширный класс переменных звезд, светимости которых сильно меняются со временем (часто периодически), должен быть исключен из рассмотрения. Однако подавляющее большинство звезд главной последовательности излучает с удивительным постоянством. Например, согласно геологическим данным, светимость нашего Солнца за последние несколько миллиардов лет оставалась постоянной с точностью до нескольких десятков процентов. По-видимому, такое постоянство светимости есть общее свойство большинства звезд главной последовательности. Таким образом, важное условие постоянства светимости звезды — центра планетной системы — почти во всех случаях удовлетворяется, во всяком случае, если речь идет о звездах с массой, близкой к солнечной. Мы довольно подробно рассмотрели температурные условия, при которых возможно возникновение и развитие жизни на той или иной планете, но эти условия, конечно, не единственные. Очень важное значение для рассматриваемой нами проблемы имеют масса образовавшейся каким-либо способом планеты и химический состав ее атмосферы. По-видимому, эти две первоначальные характеристики планеты не являются независимыми. Рассмотрим сперва случай, когда масса образовавшейся планеты невелика. Молекулы и атомы в верхних слоях атмосферы, где ее плотность низка, двигаются с различными скоростями. Часть из них имеет скорость, превышающую «вторую космическую скорость» (астрономы называют эту скорость «параболической»), и будет беспрепятственно уходить за пределы планеты. Этот процесс, до некоторой степени напоминающий испарение, называется «диссипацией». Очевидно, эффективная диссипация может происходить там, где плотность атмосферы настолько низка, что «ускользающие» атомы уже не испытывают столкновений с другими атомами. Если бы такие столкновения имели место, то они могли бы изменить величину и направление скорости ускользающих атомов, что препятствовало бы диссипации. Диссипация планетных атмосфер происходит непрерывно, так как всегда найдется некоторое количество молекул (атомов), которые при данной температуре атмосферы имеют скорости, направленные «вверх» и превосходящие параболическую. Однако для разных газов доля диссипирующих частиц будет различной. Больше всего она для легких газов — водорода и гелия. Само собой разумеется, что количество диссипирующих частиц зависит, и притом очень чувствительно, от температуры атмосферы на тех высотах, где происходит диссипация. Математическая теория диссипации планетных атмосфер впервые была развита в начале этого века английским астрономом Джинсом (автором известной космологической гипотезы, см. гл. 9). В дальнейшем она была усовершенствована трудами ряда ученых, в частности, американским астрофизиком Лайманом Спитцером и автором этой книги. Количество атомов, ускользающих из атмосферы за 1 с, дается следующей формулой:
где R0 — радиус планеты, G = 6,7 • 10-8 — известная постоянная в законе всемирного тяготения, T — температура атмосферы на уровне, где диссипация становится существенной, m — масса атома, M — масса планеты, e = 2,718... — основание натуральных логарифмов, k — постоянная Больцмана, nC — плотность на уровне убегания. Из этой формулы следует, что весь водород, находящийся в настоящее время в земной атмосфере, должен «ускользнуть» в межпланетное пространство за очень малое время — порядка нескольких лет. (При этом учитывается, что температура земной атмосферы на высоте уровня диссипации (~ 500 км) около 1500 К.). Если бы не постоянное поступление водорода в атмосферу, главным образом из-за испарения мирового океана, водорода в атмосфере нашей планеты не было бы совсем. Из формулы видно, что скорость диссипации сильно зависит от массы планеты. Это и понятно. Ведь при малой массе параболическая скорость будет невелика, поэтому значительная часть атомов и молекул будет иметь скорость, превышающую параболическую. Например, у Луны, масса которой в 81 раз меньше земной, а радиус близок к 1700 км, параболическая скорость составляет всего лишь 2,4 км/с. Поэтому даже сравнительно тяжелые газы Луна на протяжении своей «космической» истории удержать не могла. Это объясняет отсутствие атмосферы на нашем спутнике. Меркурий также лишен сколько-нибудь плотной атмосферы. # Впрочем, недавно при наблюдениях спектра Меркурия с высоким разрежением обнаружили, что он имеет чрезвычайно разреженную атмосферу, состоящую главным образом из атомов натрия. # Таким образом, чтобы на планете могла возникнуть и развиваться жизнь, ее масса не должна быть слишком маленькой. С другой стороны, слишком большая масса планеты также является неблагоприятным фактором. Планеты, массы которых достаточно велики (например, близки к массам планет-гигантов Юпитера и Сатурна), полностью удерживают свою первоначальную атмосферу. Эта «первобытная» атмосфера должна быть очень богата водородом, так как первоначальная среда, из которой образовались планеты, имела примерно тот же химический состав, что и звезды, которые в основном состоят из водорода и гелия. Если планета сохранила «первоначальный» состав среды, из которой она образовалась, ее водородно-гелиевая атмосфера должна быть очень плотной. Исключительно плотной водородно-гелиевой атмосферой обладают планеты-гиганты Юпитер и Сатурн. Мы уже подчеркивали в гл. 8, что если бы массы планет были в 5 — 10 раз больше, чем у Юпитера, они уже принципиально не отличались бы от карликовых звезд. Ряд авторов (например, академик В. Г. Фесенков) считали, что при большом обилии водорода образовавшиеся на его основе химические соединения: аммиак, метан и другие — исключают возможность образования живой субстанции, так как это довольно ядовитые газы. Впрочем, такое утверждение не является бесспорным, и в настоящее время возможность существования примитивных форм жизни на больших планетах Солнечной системы, в принципе нельзя полностью исключать (см. гл. 17). Так или иначе, для того чтобы на планетах могла возникнуть и развиваться жизнь, их массы должны быть ограничены как сверху, так и снизу. По-видимому, нижняя граница возможной массы такой планеты близка к нескольким сотым массы Земли, а верхняя в десятки раз превосходит земную. Как видим, пределы возможных масс планет, пригодных для жизни, достаточно широки. Те вопросы, которые мы сейчас затронули, тесно переплетаются с основными проблемами планетной космогонии и прежде всего с пониманием самого раннего периода Земли и планет. Мы уже подчеркивали в гл. 10, что пока состояние планетной космогонии таково, что еще не существует определенных ответов на все возникающие важные вопросы. Можно высказать только несколько замечаний самого общего характера. Нельзя считать, что первоначальный сгусток материи, удерживаемый силой взаимного тяготения составляющих его атомов и молекул, из которого впоследствии образовалась Земля, имел химический состав такой же, как Солнце и звезды, т. е. был так же богат водородом и гелием. Можно показать, что никакая диссипация не в состоянии «отсортировать» из такого сгустка водород и гелий. Коль скоро это так, мы должны сделать вывод, что Земля, так же как и другие «внутренние» планеты, образовалась из вещества, бедного водородом и гелием. Таким веществом могли быть пылинки и молекулярные агрегаты, образовавшиеся в первоначальной туманности. Вместе с тем на сравнительно больших расстояниях от Солнца условия были благоприятны для образования довольно массивных водородно-гелиевых конденсаций, которые впоследствии превратились в большие планеты. Для этой схемы трудностью является объяснение химического состава Урана и Нептуна, которые сравнительно бедны водородом и гелием. Об этом мы уже говорили в гл.10. Во всяком случае, по-видимому, не случайна сравнительная близость к Солнцу планет земной группы и значительная удаленность от него больших планет. Отсюда мы можем сделать важный вывод: то обстоятельство, что планеты, атмосферы которых в принципе пригодны для возникновения и развития жизни, находятся в сравнительной близости от Солнца, т. е. в «зоне обитаемости», является закономерным следствием процесса, приводящего к формированию планетных систем. Это, конечно, повышает вероятность того, что на некоторых планетах данной планетной системы может возникнуть и развиваться жизнь. Итак, разные условия (положение планеты в «зоне обитаемости», подходящая масса ее и «благоприятный» химический состав атмосферы) могут выполняться одновременно, т. е. не являются независимыми. В этой главе мы рассмотрели некоторые условия, необходимые для возникновения и развития жизни на планетах. Они носят самый общий характер и являются, если можно так выразиться, «астрономическими». Разумеется, чтобы на какой-нибудь планете возникла жизнь, необходимо выполнение ряда других условий. Так, например, очень важно, чтобы на поверхности планеты образовалась жидкая оболочка — гидросфера. Имеются все основания полагать, что первоначальные формы жизни скорее всего могли возникнуть в воде. Но для образования на планете достаточно мощной гидросферы нужно, чтобы существенная часть водорода, находящегося в том первоначальном материале, из которого образовалась планета, не успела диссипировать, а соединилась с кислородом. Это, конечно, накладывает дополнительное, и притом довольно жесткое, условие на массу планеты, ее радиус и расстояние от планеты до звезды. На другом важном условии (уровень жесткой радиации) мы немного остановимся в гл. 13.
Ви переглядаєте статтю (реферат): «Условия, необходимые для возникновения и развития жизни на планетах» з дисципліни «Всесвіт, життя, розум»