ДИПЛОМНІ КУРСОВІ РЕФЕРАТИ


ИЦ OSVITA-PLAZA

Реферати статті публікації

Пошук по сайту

 

Пошук по сайту

Головна » Реферати та статті » Фізика » Фізика кристалів

ОДНОМЕРНАЯ ДВУХАТОМНАЯ ЦЕПОЧКА
Рассмотрим бесконечную одномерную цепочку, показанную на рис.27, элементарная ячейка которой содержит 2 частицы. Трехмерным аналогом такой модели могут быть кристаллы NaCl, KBr и др. Постоянная решетки a=a′/2, a′–расстояние между соседними атомами, массы частиц – m1>m2, упругие силовые постоянны – (1=(2=(. Будем использовать четную нумерацию для частиц массы m1 и нечетную – для частиц массы m2. Соответствующие смещения U2n и U2n+1.

Рис.27. Двухатомная линейная цепочка а) модель цепочки с массами m1>m2 и постоянной решетки a=2a′. На рисунке выделена элементарная ячейка. Тяжелые атомы решетки m1 имеют нечетные номера, а более легкие атомы m2 – четные; б) дисперсионная зависимость ((k) для двухатомной линейной цепочки. 1 – дисперсивная область (зона собственных колебательных состояний); 2 – реактивная область (запрещенная зона частот). Дисперсионные зависимости (акустическая и оптическая ветви) непрерывны в зоне Бриллюэна и имеют экстремумы как в центре зоны (k=0), так и на ее границе (k=(/a). В этом случае колебания цепочки представляют собой стоячую волну.

Система дифференциальных уравнений, описывающая движение частиц, имеет бесконечное число уравнений, имеющих для легкой и тяжелой частицы следующий вид:

Решение этой системы ищем в виде, удовлетворяющем теореме Блоха, т.е. в виде периодической функции, определенной в элементарной ячейке, домноженной на фазовый множитель expi(k,rn).



где A1 и A2 – амплитуды смещений частиц массы m1 и m2, ( – частота колебаний, а k – волновой вектор возбуждения.
Подстановка этих решений в бесконечную систему дифференциальных уравнений приводит eё к однородной системе из двух алгебраических уравнений относительно неизвестных амплитуд колебаний А1 и А2. Чтобы система имела нетривиальное (ненулевое) решение, необходимо, чтобы ее детерминант равнялся нулю. Это дает связь между частотой возбуждения ( и волновым вектором k, которая, как известно, носит название дисперсионного соотношения:
A1(m1(2–2()+A22(coska′=0
A12(coska′+A2(m2(2–2()=0

.

Поскольку 1–2sin2ka′=coska, дисперсионное соотношение можно записать так:



Если частота ( удовлетворяет дисперсионному уравнению, можно найти соотношение амплитуд А1 и А2 соответствующих волновых возбуждений, а из начальных условий можно найти и сам амплитуды. Поскольку дисперсионное условие имеет два корня (1, (2 каждому значению волнового вектора k соответствует две волны. В зависимости от k возбуждения цепочки имеют целый набор частот – ветвь (рис.28).



Рис.28. Вид акустических (a) и оптических (б) колебаний двухатомной цепочки для значений волновых векторов k=0 (1), k=(/a (2) и волнового вектора внутри зоны Бриллюэна k=(/7a (3). Колебания с волновым вектором k=(/a на границе зоны Бриллюэна представляют собой стоячие волны. В акустической ветви колеблются тяжелые атомы, а легкие покоятся; в оптической ветви колеблются легкие атомы, а тяжелые находятся в покое.

Таким образом, дисперсионная кривая имеет две ветви – акустическую (знак –) и оптическую (знак +). Так как дисперсионная зависимость ((k) периодична по k с периодом 2(/a, нет необходимости рассматривать вс возможны значения k. Область изменения волнового вектора k выбирается симметричной (–(/a, +(/a ), чтобы учесть волны, бегущие в противоположных направлениях. Эта область носит название первой зоны Бриллюэна.

Легко получить значения частот при k=0 и на границе зоны Бриллюэна (k=(/a):


центр зоны Бриллюэна
граница зоны Бриллюэна
Акустическая
ветвь
(a=0
(а=(2(/m1)1/2
Oптическая
ветвь
(о=(2((1/m1+1/m2))1/2
(o=(2(/m2)1/2

Внутри зоны ветви непрерывны. Ход ветвей вблизи центра зоны Бриллюэна при k(0 можно получить, рассматривая разложение дисперсионой зависимости ((k) в ряд по k, и учитывая, что сoska (1–k2a2/2+...:
Акустическая ветвь (знак –):



Скорость этой волны является скоростью звука, поскольку:

.

Оптическая ветвь (знак +):



Оптическая ветвь, таким образом, имеет максимум при k=0, а вблизи центра зоны Бриллюэна имеет параболическую зависимость от волнового вектора.

Ход ветвей на границе зоны Бриллюэна (k=(/a) также можно получить, разлагая ((k) в ряд в этой точке и учитывая, что :

сoska ( сos((–()=–сos( =–1+(2/2+...

1. Акустическая ветвь (знак –):



Групповая скорость волны равна Vгр=(d(/dk)k=0=0 , т.е. это – стоячая волна.

2. Оптическая ветвь (знак + ):
.
Таким образом, частоты акустической и оптической ветви вблизи границы зоны Бриллюэна меняются по параболическому закону, а групповая скорость волны на границе зоны Бриллюэна равна нулю, т.е. это – стоячая волна.

Если ограничиться взаимодействием лишь ближайших соседей, то ветви внутри зоны гладки. Обе ветви идут не пересекая друг друга и имеет место область запрещенных частот от значения (2(/m1)1/2 до (2(/m2)1/2.
Характер движения частиц в ветвях можно получить, вернувшись к алгебраическим уравнениям для амплитуд А1 и А2. Если А1/А2>0, то движения частиц происходит в фазе, если А1/А2(0 – в противофазе. Используя второе уравнение для амплитуд для нулевого волнового вектора, можно получить:
.
В акустической ветви (знак плюс) это отношение равно +1:
(А1/А2)ak=(m1–m2+m1+m2)/2m1=+1 ,
т.е. частицы с массами m1 и m2 движущая в фазе.
В оптической ветви (знак минус) это отношение отрицательно:

(А1/А2)opt=(m1–m2–m1–m2)/2m1= –m2/m1,

т.е. частицы колеблются в противофазе, а амплитуды движений обратно пропорциональны массам. Важно, что если на частицах 1 и 2 есть заряды, то такое колебание сопровождается изменением дипольного момента элементарной ячейки и, значит, оно может взаимодействовать со светом. Поэтому ветвь таких колебаний называется оптической.
В случае малых волновых векторов можно получить, что для акустической и оптической ветвей справедливо

(А1/А2)ak=1+k2(;
(А1/А2)opt= –(m2/m1)(1–k2( ),
где ( = (m1–m2)/8(m1+m2)

В акустических колебаниях отношение амплитуд возрастает, а в оптических – уменьшается, но колебания тяжелых и легких частиц остаются в противофазе. Вблизи границы зоны Бриллюэна при k=((–()/a, coska( –1+(2/2+…, и отношения амплитуд имеет вид:

,

.

Поскольку в цепочке m1–m2>0, то в колебаниях оптической ветви движения происходят в противофазе, причем при ((0 (А1/А2)opt(0, т.е тяжелые частицы покоятся, а легкие движутся. Длина волны при этом минимальна и равна (=2a. В акустической ветви при колебаниях на границе зоны частицы движутся в фазе. При уменьшении ( отношение (А1/А2)ak возрастает и при ((0 стремится к бесконечности. Это означает, что легкие частицы покоятся, а тяжелые движутся. Вид этих колебаний приведен на рис.28.



Рис.28. Вид акустических (a) и оптических (б) колебаний двухатомной цепочки для значений волновых векторов k=0 (1), k=(/a (2) и волнового вектора внутри зоны Бриллюэна k=(/7a (3). Колебания с волновым вектором k=(/a на границе зоны Бриллюэна представляют собой стоячие волны. В акустической ветви колеблются тяжелые атомы, а легкие покоятся; в оптической ветви колеблются легкие атомы, а тяжелые находятся в покое.

Для цепочки конечных размеров можно использовать циклические граничные условия Борна–Кармана, устанавливающие идентичность атома n и n+N:

Un=Un+N; exp[i(((t+2nka′)]=exp[i(((t+(2n+N)ka′)]

exp[iNka′]=1; Nka′=2(p; p=0,1,2...N–1;

–(/a<k=p2(/Na<+(/a; –N/2<p<+N/2

Таким образом, имеется N различных волновых векторов k, причем каждому волновому вектору k соответствует два колебания с частотами (ak и (opt, так что полное число типов движений ограничено и равно 2N (N – для оптической ветви и N – для акустической).
Трансформация ветвей в зоне при изменении периода решетки показана на рис.29.

Как и в случае одноатомной цепочки можно рассмотреть функцию плотности частот в ветвях g(()=dZ/d(, определяемую как число мод (типов колебаний) dZ, приходящихся на единичный интервал частот d(. Ясно, что существует две области частот, где g(() отлична от нуля. Эти области соответствуют акустической и оптической ветвям. Они разделены запрещенной областью частот, где g(()=0. В граничных точках зоны Бриллюэна функция плотности частот стремиться к бесконечности, что является следствием приближения ближайших соседей. Полное число колебаний в цепочке конечно и равно 2N, так что

.

При рассмотрении реальной двухатомной цепочки необходимо учесть, что частицы могут смещаться не только вдоль цепочки, но и поперек, т.е. каждая частица будет иметь 3 степени свободы. Поэтому уравнений движения будет в 3 раза больше, и в 3 раза больше будет решений. Для каждого волнового вектора k будет существовать шесть волн с различными частотами, т.е. дисперсионная кривая будет иметь шесть ветвей. Три из них имеют частоты равные нулю при k(0 (трансляционные движения частиц в фазе вдоль и поперек цепочки) и являются акустическими, остальные три – оптические.


Рис.29.Трансформация ветвей в зоне при изменении периода решетки. а) Ветвь одноатомной цепочки с периодом a и одним атомом массы m в элементарной ячейке (сплошная кривая) переходит в две ветви типа А (акустическая) и О (оптическая) в случае неконгруэнтности (отсутствия трансляционной инвариантности) атомов (m1(m2). Поскольку элементарная ячейка в этом случае должна имеет удвоенный размер a′=2a, частоты обоих ветвей на границе зоны почти равны (=((/m1 ( (=((/m2 . В этом случае говорят, что зона Бриллюэна складывается в направлении k(. Трехмерный аналог этого случая – кристаллы C, Si, Ge, в решетке которых 2 атома в элементарной ячейке, и в которых в направлении (100) LA и LO ветви вырождены в точке X зоны Бриллюэна (см. рис.41). б) Складывание зоны Бриллюэна в случае двухатомной линейной цепочки. Появление сверхструктуры с периодами a′=2a, a′′=4a и т.д. приводит к последующему уменьшению зоны Бриллээна и увеличению числа частот в центре зоны с k=0. в) мягкие моды в линейной двухатомной цепочке: 1– равновесная конфигурация цепочки с постоянной a и массами m1 и m2; 2 – оптическое колебание в этой цепочке с k=0. При «замораживании» смещений число частиц в ячейке не изменяется; 3 и 4 – оптическое и акустическое колебания двухатомной цепочки с волновым вектором k=(/a, т.е. на границе зоны Бриллюэна. При «замораживании» этих колебаний (т.е. смещений) число частиц в элементарной ячейке удваивается; 5 – замороженная конфигурация акустической моды 4, приводящая к цепочке с элементарной ячейкой удвоенного размера. Штриховкой показана неконгруэнтность атомов в новой ячейке . Смещения частиц в этой конфигурации полностью подобны смещениям в случае 4, но представляют теперь нормальное колебание с волновым вектором k=0. Случаи 4 и 5 иллюстрируют складывание зоны, показанной на рис.28б, и переход точки с k=(/a в точку k=0 зоны Бриллюэна другой фазы.

В общем случае при наличии s частиц в элементарной ячейке полное число степеней свободы ячейки равно 3s. Полное число ветвей тогда будет 3s. Из них 3 ветви акустические, остальные 3s–3 ветви – оптические (рис.30).

Ви переглядаєте статтю (реферат): «ОДНОМЕРНАЯ ДВУХАТОМНАЯ ЦЕПОЧКА» з дисципліни «Фізика кристалів»

Заказать диплом курсовую реферат
Реферати та публікації на інші теми: Умови виникнення кредитної угоди
Оцінка ділової активності підприємства
Збір за видачу дозволу на розміщення об’єктів торгівлі та сфери п...
ВАЛЮТНИЙ РИНОК. ВИДИ ОПЕРАЦІЙ НА ВАЛЮТНОМУ РИНКУ
АУДИТОРСЬКИЙ РИЗИК ТА АУДИТОРСЬКІ ДОКАЗИ. СУТТЄВІСТЬ ПОМИЛОК


Категорія: Фізика кристалів | Додав: koljan (09.12.2013)
Переглядів: 1065 | Рейтинг: 0.0/0
Всього коментарів: 0
Додавати коментарі можуть лише зареєстровані користувачі.
[ Реєстрація | Вхід ]

Онлайн замовлення

Заказать диплом курсовую реферат

Інші проекти




Діяльність здійснюється на основі свідоцтва про держреєстрацію ФОП