ДИПЛОМНІ КУРСОВІ РЕФЕРАТИ


ИЦ OSVITA-PLAZA

Реферати статті публікації

Пошук по сайту

 

Пошук по сайту

Головна » Реферати та статті » Фізика » Курс лекцій з загальної фізики, орієнтований на будівельні спеціальності

Уравнение бегущей волны
Бегущими волнами называются воны, которые переносят в пространстве энергию. Перенос энергии в волнах количественно характеризуется вектором плотности потока энергии. Это вектор для упругих волн называется вектором Умова .Направление вектора Умова совпадает с направлением переноса энергии, а его модуль равен энергии переносимой волной за единицу времени через единицу площади, расположенную перпендикулярно распространению волны.
Плотность потока энергии , где V- объем.
, (22.3)
где ρ – плотность среды.
Для вывода уравнения бегущей волны – зависимости смещения колеблющейся частицы от координат x и времени t – рассмотрим плоскую волну, предполагая, что колебания носят гармонический характер, а ось х совпадает с распространением волны. Волновые поверхности перпендикулярны оси х, а также все точки волновой поверхности перпендикулярны оси х, а так как все точки волновой поверхности колеблются одинаково, то смещение ( будет зависеть только от x и t.
На рис.22.1 рассмотрим некоторую частицу среды В, находящуюся от источника колебаний на расстоянии х. Если колебания точек лежащих в плоскости х=0, описывается функцией , то частица среды В колеблется по тому же закону, но ее колебания будут отставать по времени от колебаний источника на τ, так как для прохождения волной расстояния х требуется время , где υ- скорость распространения волны. Тогда уравнение колебаний частиц, лежащих в плоскости х, имеет вид:
, (22.4)
где ((x,t) - является периодической функцией времени и координаты;
x/υ – время, когда начала колебаться точка В.
Уравнение (22.4) есть уравнение бегущей волны. Если же плоская волна распространяется в противоположном направлении от источника колебаний уравнение представлено в виде:
. (22.5)
В общем случае уравнение плоской волны, распространяющейся вдоль положительного направления х в среде, не поглощающей энергию, имеет вид.
, (22.6)
где А=const амплитуда волны, ω – циклическая частота волны, φ0 – начальная фаза колебаний, определяемая в общем случае выбором начала отсчета x и t, – фаза плоской волны.
Для характеристики волн используют волновое число
. (22.7)
Учитывая (22.7) уравнение (22.6.) можно записать в виде:
. (22.8)
Уравнение распространяющейся вдоль отрицательного направления оси х, отличается от (22.8) только знаком перед коэффициентом kx.

Ви переглядаєте статтю (реферат): «Уравнение бегущей волны» з дисципліни «Курс лекцій з загальної фізики, орієнтований на будівельні спеціальності»

Заказать диплом курсовую реферат
Реферати та публікації на інші теми: Аудиторські процедури: зміст і послідовність проведення
Аудит витрат на оплату праці. Мета і завдання аудиту
ВИДИ ГРОШОВИХ СИСТЕМ ТА ЇХ ЕВОЛЮЦІЯ
Синоніми (ідеографічні, стилістичні, контекстуальні, перифраза, е...
ШВИДКІСТЬ ОБІГУ ГРОШЕЙ


Категорія: Курс лекцій з загальної фізики, орієнтований на будівельні спеціальності | Додав: koljan (07.12.2013)
Переглядів: 523 | Рейтинг: 0.0/0
Всього коментарів: 0
Додавати коментарі можуть лише зареєстровані користувачі.
[ Реєстрація | Вхід ]

Онлайн замовлення

Заказать диплом курсовую реферат

Інші проекти




Діяльність здійснюється на основі свідоцтва про держреєстрацію ФОП