Регрессия и корреляция относятся к тем способам, к-рые чаще всего используются для описания связей между переменными. Два разных измерения, полученных по каждому элементу выборки, можно отобразить в виде точек в декартовой системе координат (х, у) — диаграммы рассеяния, являющейся графическим представлением связи между этими измерениями. Часто эти точки образуют почти прямую линию, свидетельствующую о линейной связи между переменными. Для получения линии регрессии — мат. уравнения линии наилучшего соответствия множеству точек диаграммы рассеяния — используются численные методы. После выведения линии регрессии появляется возможность предсказывать значения одной переменной по известным значениям другой и, к тому же, оценивать точность предсказания. Коэффициент корреляции ® — это количественный показатель тесноты линейной связи между двумя переменными. Методики вычисления коэффициентов корреляции исключают проблему сравнения разных единиц измерения переменных. Значения r изменяются в пределах от -1 до +1. Знак отражает направление связи. Отрицательная корреляция означает наличие обратной зависимости, когда с увеличением значений одной переменной значения др. переменной уменьшаются. Положительная корреляция свидетельствует о прямой зависимости, когда при увеличении значений одной переменной увеличиваются значения др. переменной. Абсолютная величина r показывает силу (тесноту) связи: r = ±1 означает прямолинейную зависимость, а r = 0 указывает на отсутствие линейной связи. Величина r2 показывает процент дисперсии одной переменной, к-рый можно объяснить вариацией др. переменной. Психологи используют r2, чтобы оценить полезность конкретной меры для предсказания. Коэффициент корреляции Пирсона ® предназначен для интервальных данных, полученных в отношении предположительно нормально распределенных переменных. Для обработки др. типов данных имеется целый ряд др. корреляционных мер, напр. точечно-бисериальный коэффициент корреляции, коэффициент j и коэффициент ранговой корреляции ® Спирмена. Корреляции часто используются в психологии как источник информ. для формулирования гипотез эксперим. исслед. Множественная регрессия, факторный анализ и каноническая корреляция образуют родственную группу более современных методов, ставших доступными практикам благодаря прогрессу в области вычислительной техники. Эти методы позволяют анализировать связи между большим числом переменных.
Ви переглядаєте статтю (реферат): «Связи между переменными» з дисципліни «Психологічна енциклопедія»