ДИПЛОМНІ КУРСОВІ РЕФЕРАТИ


ИЦ OSVITA-PLAZA

Реферати статті публікації

Пошук по сайту

 

Пошук по сайту

Головна » Реферати та статті » Біологія » Біомеханіка

Плавание
При плавании все части тела вовлекаются в движение. Плавание основано на взаимодействии пловца с водой, при котором создаются силы, продвигающие его в воде и удерживающие на ее поверхности.

Рис. 15.30. Плавание вольным стилем (а, б, в).
Старт в плавании вольным стилем (а): 1. Исходное положение: лицо пловца обращено вперед; плечи — над коленями, колени — над пальцами ног; положение рук вариативно. 2. Вылет со стартовой тумбочки. 3. Тело в полете вытянуто, голова между руками. 4. Тело под небольшим углом входит в воду. 5. Ноги начинают движение в тот момент, когда достигнута максимальная скорость от прыжка. 6. Руки начинают гребковые движения, поддерживая максимальную скорость. 7. Через несколько гребков начинается дыхание. Движения ногами в кроле (б). На верхнем рисунке правая нога выполняет удар, а левая выходит в исходное положение для удара. На среднем рисунке удар выполняет левая нога. Сила отталкивания направлена, как показывают стрелки, не вниз, а назад. Нижний рисунок демонстрирует положение пловца при плавании с помощью ног с доской. Руки вытянуты вперед, пальцы положены на доску сверху, пловец лежит в воде, как при плавании кролем, что создает большую нагрузку для ног. в: Дыхание в кроле. На верхнем рисунке показано начало вдоха в тот момент, когда левая рука вошла в воду. Голова опущена и ее ось является продолжением оси тела. Средний рисунок иллюстрирует положение головы в сочетании с движением правой руки. Нижний рисунок показывает, как быстро лицо поворачивается в воду после окончания вдоха

Биомеханика плавания связана с тем, что силы, тормозящие продвижение, значительны, переменны и действуют непрерывно. «Опора» на воду создается во время гребковых движений и остается переменной по величине.
Спортивное плавание включает четыре вида: вольный стиль (кроль), плавание на спине, брасс, баттерфляй.
Вольный стиль (рис. 15.30). Продвижение вперед происходит постоянно за счет смены работы рук и ног. Руки действуют под водой для продвижения вперед, а противоположное движение — вынос рук вперед — происходит над водой. Движение кисти под водой происходит без сильного отклонения в сторону при слегка согнутой руке. Оно заканчивается, когда рука выходит из воды у бедер. Затем без остановки рука переносится вперед и снова включается в эффективную работу перед плечом. Движения ног — вверх-вниз представляет собой малый тормозящий момент. Движение начинается от таза и продолжается через бедро, коленный сустав, голень, голеностопный сустав вплоть до пальцев ног. При ударе вниз стопа поворачивается внутрь для повышения эффективности отталкивания.
Плавание на спине (рис. 15.31). Тело выпрямлено, плечевой пояс лежит несколько выше таза, голова слегка подтянута к груди.
Движения рук. К началу подводного движения, продвигающего тело пловца вперед, руки находятся на поверхности воды в выпрямленном положении над плечом. Кисть — в положении отталкивания. Руки начинают подтягивать, при этом они слегка согнуты в локтевом суставе. В конце движения под водой руки опять почти выпрямлены. Во время всей работы в воде кисть проводится на глубине 20—30 см. Рука переносится над водой и, опускаясь в нее, начинает новую рабочую фазу. Ритм смены рук здесь отличается от кроля. В то время, как одна рука совершает движение под водой, другая производит маховое движение над водой и затем погружается в воду.
Движения ног. Ноги совершают поочередно удары вверх и вниз. Здесь стопа по мере надобности разворачивается внутрь во время удара вверх с тем, чтобы повысить действенность отталкивания. Амплитуда движения составляет 30—50 см.
Брасс (рис. 15.32). Брасс — самый медленный стиль из четырех спортивных способов плавания. Это объясняется прежде всего тормозящими моментами, возникающими при вынесении рук вперед, а также слабо выраженным подводным движением.
Движения рук. Из вытянутого положения руки симметрично разводятся в стороны и несколько вниз; при этом внутренние поверхности кистей, развернутые во внешнюю сторону и слегка закругленные, действуют как весла. Примерно на уровне плеч руки делают легкий мощный толчок внутрь, подводятся близко к груди и широко разводятся вперед.


Рис. 15.31. Плавание на спине (а, б, в, г, д). Вид сбоку (а) — показана прямая линия «спина—бедра» и плоское положение тела в воде. Пунктирная линия очерчивает
зону выполнения гребка. Движения ногами при плавании на спине (б) — нога движется вверх в согнутом положении, вниз — выпрямленная. Ноги выполняют движения несколько глубже, чем при плавании кролем на груди. Вид спереди и сзади (в) — верхний рисунок показывает гребок левой рукой и пронос правой. Средний и нижний рисунки показывают согнутое положение руки в гребке; рука проводится близко к поверхности воды. Старт (д): 1 — наиболее распространенные исходные положения на старте: а) стопа одной ноги стоит выше другой; б) обе стопы находятся на одном уровне. Первое положение более удобно и надежно. 2. Оттапкивание от стенки с активным движением головой. Руки выполняют мах через стороны или над головой. 3. В конце полета тело почти прямое, голова отклонена назад. 4. Голова слегка поднимается для регулирования глубины скольжения. 5. Ноги начинают движения, после чего включаются руки. Обычный скоростной поворот на спине (г): 1 — Правая рука касается стенки. 2. Голова опускается вниз; ноги сгибаются для повышения скорости поворота; правая рука касается стенки на глубине 50—60 см; левая поддерживает равновесие. 3. Пловец проносит ноги по воздуху к стенке. 4. Пловец готов к отталкиванию. 5. Спортсмен отталкивается, слегка направляя тело к поверхности воды

Рис 15.32. Плавание брассом (а, б, в, г). Вид сбоку (а): 1. Исходное положение: руки вытянуты, голова опущена, ноги прямые. 2. Руки начали гребок, ноги - подтягивание Голова пока опущена. Обратите внимание на колени. 3. Руки выполняют гребок. Голова поднята для вдоха. 4. Руки закончили гребок. Голова в высоком положении. Ноги готовы начать отталкивание. 5. Ноги заканчивают отталкивание. Руки вытянуты, голова опущена. Обратите внимание на высокое, близкое к поверхности воды положение ног. 6. И снова исходное положение. Движение руками в брассе (вид спереди) (б). На двух верхних рисунках — положение рук перед началом гребка. На следующих двух показан гребок с высоким положением локтя. Нижний рисунок иллюстрирует положение рук перед их выведением вперед. Движения ногами в брассе (в): 1. Положение перед началом подтягивания ног. 2. Начинается подтягивание ног. Стопы все еще вместе, расстояние между коленями больше, чем между стопами. 3. Ноги подтянуты полностью. Стопы развернуты в стороны для того, чтобы увеличить площадь отталкивания. Начинается толчок назад. 4. Вид сбоку иллюстрирует фазу подтягивания ног. Обратите внимание на высокое положение коленей. Поворот в брассе (г): 1. Руки касаются стенки на уровне воды. 2. Тело разворачивается. 3. Пловец готов к отталкиванию, 4. Отталкивание от стенки; тело вытянуто. 5 и 6. Руки выполняют длинный гребок до бедер. 7. Начинается выведение ног и рук в исходное для гребка положение. 8. После отталкивания ногами тело выходит на поверхность воды. 9. Начинается гребок руками

Движения ног. Из вытянутого положения голени одновременно и симметрично подводятся к тазу, при этом колени и пятки несколько разведены, ступни развернуты наружу и подтянуты к большой берцовой кости. Из этого положения, при котором пятки находятся на расстоянии 30—40 см от таза, производится широкий толчок разведенными ногами в стороны. При этом особенно сильно отталкиваются голенями и подошвами ступни. В затухающей фазе движения ноги опять сводят вместе и выпрямляют.
Баттерфляй (рис. 15.33). Плавание баттерфляем выполняется с помощью порхающих над водой рук одновременно с движениями ног и корпуса, которые напоминают движения хвостовых плавников дельфина. К началу подводного движения обе руки находятся впереди плеч; они подводятся под туловище одновременно. После того, как кисти обеих рук выносятся из воды в сторону от бедер, руки как можно более напряженно вновь выводятся вперед до очередного погружения.
Движение ног начинается в поясничной части. Для увеличения силы отталкивания при ударе вниз стопы повернуты внутрь, а при ударе вверх опять становятся продолжением голени.
Плавучесть точно так же как сила, обусловленная весом тела, приложена к его центру тяжести (ЦТ), подъемная сила, обусловленная весом вытесненной им жидкости, приложена к точке, называемой центром плавучести.

Рис. 15.33. Плавание способом баттерфляй (а, б, в). Вид спереди (а):
1. Положение головы перед проносом рук. 2. Гребок согнутыми руками, подобно тому, как он выполняется в кроле. 3. Положение рук после гребка в начале проноса. Вид сбоку (б): 1. Руки погружены в воду и готовы начать гребок.
2. Руки выполнили половину гребка. Начинается вдох. 3. Руки закончили гребок. Вдох заканчивается. 4. Руки выполнили половину проноса. Голова все еще над водой. 5. Голова опущена в воду перед погружением рук. Дельфинообразные движения ног в баттерфляе (в). Рисунок показывает сходство движений ногами при плавании баттерфляем с движениями ногами при плавании кролем. Ноги сгибаются при ударе вниз и, выпрямленные, поднимаются вверх
При движении в жидкости твердого тела (например, шара) ближайший слой жидкости прилипает к нему и движется вместе с ним; остальные слои скользят друг относительно друга. Сила, действующая на твердое тело, движущееся внутри вязкой среды (жидкость), и направленная противоположно скорости тела, называется сопротивлением среды.
Если при движении тела за ним не возникает завихрения, то сопротивление среды пропорционально скорости тела v. В частном случае при движении шара радиусом R сопротивление среды


где η — коэффициент внутреннего трения или вязкость. Единицы измерения коэффициента внутреннего трения:

Формула (15.1) носит название формула Стокса.
Таблица 15.4
Вязкость воды при различных температурах
t, °С 0 5 10 15 20 25 30 40 50 60
η•106 кг/м·с 1797 1518 1307 1140 1004 895 803 655 551 470
t,°C 70 80 90 100 110 120 130 140 150 160
η ·106 кг/м·с 407 357 317 284 256 232 212 196 184 174
Таблица 15.5
Кинематическая вязкость некоторых жидкостей при 20° (Hadgman C.D., 1965)
Среда Вязкость, ПЗ Плотность, г/см3 Кинематическая
ВЯЗКОСТЬ, СМ2/С
Воздух 1,8•10 -4 1,3 • Ю-3 0,14
Вода 0,010 1,00 0,010
Вода препятствует продвижению пловца. В гидродинамике для расчета движения жидкости используют число Рейнольдса. Число Рейнольдса — это безразмерная величина , где — плотность и вязкость жидкости, и — скорость ее движения относительно тела и а — некоторая длина.
Правило, согласно которому строение потока около тел одной и той же формы одинаково, если одинаково число Рейнольдса, неприменимо в тех случаях, когда речь идет о поведении жидкости около ее свободной поверхности.
Число Рейнольдса удобно выражать как величина, называемая кинематической вязкостью.

Во многих случаях трудно измерять силы, которые действуют на тело, движущееся в жидкости. В этой связи для экспериментов используют аэродинамические и гидродинамические трубы.
Лобовое сопротивление. При движении какого-нибудь тела в жидкости, на него действует сила, задерживающая его движение. Эту силу называют лобовым сопротивлением. Величина ее зависит от природы жидкости и от размеров, формы и скорости движущегося тела.
Как показали эксперименты в аэродинамических трубах, лобовое сопротивление тела или различных тел одной и той же формы можно определить по формуле где Д — лобовое сопротивление, р — плотность жидкости, и — скорость движения жидкости относительно тела, А — характеристическая площадь и Сд — величина, называемая коэффициентом лобового сопротивления, которая зависит от формы тела и от числа Рейнольдса.
К сожалению, не существует единого определения А, которое было бы удобным при любой форме тела. Используются следующие площади:
1) лобовая площадь, т. е. площадь проекции тела на плоскость, перпендикулярно направлению потока. В случае цилиндра, имеющего высоту h и радиус г, лобовая площадь будет равна πr2, если ось цилиндра параллельна потоку, и 2rh, если она перпендикулярна ему;
2) площадь наибольшей проекции, т. е. проекции по тому направлению, по которому площадь ее будет наибольшей; эту величину используют, когда имеют дело с обтеканием профиля крыла; по сравнению с лобовой площадью она имеет то преимущество, что не изменяется при наклоне профиля;
3) суммарная поверхность тела. Следует помнить, что в случае тонкой пластинки это будет суммарная площадь обеих ее сторон.
Если есть сомнения, то важно указать, какая именно из этих площадей была использована при вычислении коэффициента С
На рис. 15.34 приведены кривые зависимости коэффициента лобового сопротивления Сд от числа Рейнольдса для тел различной формы.
Все коэффициенты были вычислены на основе лобовой площади.
Число Рейнольдса для всех тел, кроме диска, определялось обычным способом по длине, измеренной в направлении потока; для диска же его определяли по диаметру, хотя он расположен перпендикулярно потоку.
В связи с отсутствием работы по лобовому сопротивлению у пловцов, мы приводим данные Т.О. Lang, K.S. Norris (1966), R. Alexander (1968) полученные при изучении дельфинов. Было найдено, что при коротких «бросках» дельфин может развивать скорость до 830 см/с (около 16 узлов), а со скоростью 610 см/с (около 12 узлов) способен плыть примерно в течение 1 мин. Дельфин (Turbiopsgilli) имел длину 191 см, так что число Рейнольдса при первой из этих скоростей составляло 830·191 /0,01 = 1,6·107. Профиль дельфина хорошо обтекаем. Кожа очень гладкая и лишена волос. Все указывает на малую величину лобового сопротивления.


Рис. 15.34. Зависимость коэффициента лобового сопротивления от числа Рейнольдса для диска, расположенного перпендикулярно направлению своего движения; для удлиненного цилиндра, движущегося перпендикулярно своей оси; для шара и для тела обтекаемой формы, движущегося вдоль своей оси (по Р. Александер, 1970)

Попробуем оценить величину лобового сопротивления для дельфина, плывущего со скоростью 830 см/с и мощность, развиваемую его мышцами. Лобовая площадь у дельфина длиной 191 см, вероятно, составляет около 1100 см2. Коэффициенты лобового сопротивления для обтекаемых тел при числе Рейнольдса около 1,6-107 близки к 0,055. Подставив эти величины в уравнение
мы найдем, что лобовое сопротивление у нашего дельфина составляет примерно 1 /2 (830)2·1100·0,055 = 2,0-107 дин. Мощность равна сопротивлению, умноженному на скорость, т. е. в данном случае 830·2,0·107 эрг/с, или 1660 Вт. Однако от мышц требуется большая мощность, так как КПД дельфина при плавании не может достигать 100%; поэтому она едва ли могла быть меньше 2000 Вт. Дельфин весит 89 кг, из которых на долю участвующих в плавании мышц приходится, вероятно, около 15 кг. Таким образом, мощность мышц должна составлять примерно 130 Вт/кг. Это в 3 раза больше максимальной мощности, которую могут развивать мышцы человека при работе на велоэргометре.
Лобовое сопротивление — не единственная гидродинамическая сила, действующая на тела, которые движутся в жидкости или находятся в потоке. По определению оно имеет то же направление, что и скорость движения жидкости относительно тела. Когда симметричное тело движется вдоль своей оси симметрии, действующая на него гидродинамическая сила направлена прямо и представляет собой лобовое сопротивление. Но когда симметричное тело движется под некоторым углом к оси симметрии, гидродинамическая сила действует под углом к его пути. Ее можно разложить на две составляющие, одна из которых направлена назад и представляет собой лобовое сопротивление, а другая действует под прямым углом к первой.
Энергетика пловца. Когда человек плывет, он сообщает некоторое количество энергии воде, чтобы продвинуться (проплыть) в ней. Это создает волну, которая в конечном счете потеряет всю сообщенную ей энергию в виде тепла, и поверхность воды снова станет спокойной. Затраченная таким образом при плавании энергия представляет собой совершенную работу плюс тепло, потерянное телом пловца.

Ви переглядаєте статтю (реферат): «Плавание» з дисципліни «Біомеханіка»

Заказать диплом курсовую реферат
Реферати та публікації на інші теми: Подвоєння та подовження приголосних
Орфоепія і українська вимова
Етапи процесу кредитування
Дохідність залученого капіталу
Технічні засоби для організації локальних мереж типу TOKEN RING; ...


Категорія: Біомеханіка | Додав: koljan (23.12.2012)
Переглядів: 761 | Рейтинг: 0.0/0
Всього коментарів: 0
Додавати коментарі можуть лише зареєстровані користувачі.
[ Реєстрація | Вхід ]

Онлайн замовлення

Заказать диплом курсовую реферат

Інші проекти




Діяльність здійснюється на основі свідоцтва про держреєстрацію ФОП