ДИПЛОМНІ КУРСОВІ РЕФЕРАТИ


ИЦ OSVITA-PLAZA

Реферати статті публікації

Пошук по сайту

 

Пошук по сайту

Головна » Реферати та статті » Товарознавство » Товарознавство сировини і матеріалів

Химический состав стали
Свойства стали определяются ее химическим составом. Содержащиеся в стали компоненты можно разделить на четыре группы: постоянные (обыкновенные), скрытые, случайные и специальные (легирующие).
К постоянным примесям относятся углерод, марганец, кремний, сера и фосфор.
Углерод — неотъемлемая составляющая часть стали, оказывающая на ее свойства основное влияние. Его содержание в выпускаемых марках стали колеблется от 0,1 до 1,4 %. С увеличением содержания углерода в стали повышаются ее твердость и прочность, уменьшаются пластичность и вязкость.
Марганец относится к постоянным примесям, если его содержание составляет менее 1 %. При содержании более 1 % он является легирующим элементом.
Марганец является раскислителем стали. Он повышает ее прочность, износостойкость и прокаливаемость, снижает коробление при закалке, улучшает режущие свойства стали. Однако ударная вязкость при этом снижается. Сталь, содержащая 11—14 % марганца (сталь Гатфильда), отличается высокой износостойкостью, так как способна упрочняться при пластической деформации. Сталь, содержащая 10—12 % марганца, становится немагнитной.
Кремний также является раскислителем стали и легирующим элементом, если его содержание превышает 0,8 %. Он увеличивает прочностные свойства стали, предел упругости, коррозионную и жаростойкость, однако снижает ее ударную вязкость.
Сера и фосфор являются вредными примесями. Так, сера делает сталь «красноломкой», а фосфор, повышая твердость стали, снижает ее ударную вязкость и вызывает «хладноломкость», т. е. хрупкость при температурах ниже —50°C.
Скрытые примеси представляют собой кислород, азот и водород, частично растворенные в стали и присутствующие в виде неметаллических включений (окислов, нитридов). Они являются вредными примесями, так как разрыхляют металл при горячей обработке, вызывают в нем надрывы (флокены).
Случайные примеси — это медь, цинк, свинец, хром, никель и другие металлы, попадающие в сталь с шихтовыми материалами. В основном они ухудшают качество стали.
Специальные добавки (легирующие элементы) вводятся в сталь с целью придания ей тех или иных свойств. К ним относятся марганец, кремний, хром, никель, молибден, вольфрам, ванадий, бор, ниобий, цирконий, селен, теллур, медь и др.
Наиболее распространенным легирующим элементом является хром. Он препятствует росту зерна при нагреве стали, улучшает механические и режущие свойства, повышает коррозионную стойкость, прокаливаемость, способствует лучшей работе на истирание. При содержании хрома свыше 10 % сталь становится нержавеющей, но одновременно теряет способность воспринимать закалку.
Никель повышает прочность стали при сохранении высокой вязкости, препятствует росту зерна при нагреве, снижает коробление при закалке, увеличивает коррозионную стойкость и прокаливаемость. При содержании никеля 18—20 %-я сталь становится немагнитной, жаростойкой, жаропрочной и коррозионностойкой.
Молибден измельчает зерно стали, значительно повышает ее прокаливаемость, стойкость против отпуска, вязкость при низких температурах, ковкость и абразивную стойкость, снижает склонность к отпускной хрупкости.
Вольфрам повышает твердость и режущие свойства стали, прокаливаемость, прочность и вязкость. Стали с содержанием 9 и 18 % вольфрама известны как быстрорежущие.
Ванадий создает мелкозернистую структуру стали, задерживает рост зерна при нагреве, повышает ударную вязкость, устойчивость против вибрационных нагрузок, прокаливаемость и стойкость против отпуска.
Бор увеличивает прокаливаемость стали, повышает ее циклическую вязкость, способность гасить колебания высокой частоты, снижает склонность к необратимой отпускной хрупкости.
Ниобий предотвращает межкристаллическую коррозию, улучшает сварочные свойства, повышает пластичность, прочность и ползучесть стали при высоких температурах.
Цирконий повышает предел выносливости стали на воздухе и в коррозионных средах, улучшает ее прочностные характеристики при повышенных температурах и ударную вязкость при температуре ниже нуля, замедляет рост зерна, повышает прокаливаемость и свариваемость.
Медь повышает коррозионную стойкость стали, а селен и теллур — механические свойства стали и особенно ее пластичность,
Строение стального слитка и металлургические методы повышения его качества
На металлургических заводах выплавленную сталь из печей разливают в ковши, где выдерживают 5—10 мин для выравнивания ее состава, всплытия неметаллических включений и выхода газов, а затем разливают в изложницы, представляющие собой специальные чугунные или стальные формы. Здесь сталь кристаллизуется, образуя слитки различной массы и конфигурации. Получаемые слитки затем используются в кузнечных или прокатных цехах.
Строение стального слитка неоднородно. Поверхностный его слой представляет мелкие равноосные зерна, промежуточный слой — длинные, ориентированные перпендикулярно к поверхности, «столбчатые» кристаллы. Сердцевину слитка составляют крупные равноосные зерна. В верхней срединной части размещается так называемая усадочная раковина, образуемая легкоплавкими примесями, неметаллическими включениями и газами, содержащимися в жидкой стали.
При этом глубокое залегание усадочной раковины, сильно развитая зона «столбчатых» кристаллов, а также газовые пузыри, неметаллические включения и трещины снижают качество стальных слитков.
Основными металлургическими методами повышения качества стали является непрерывная разливка, вакуумирование, электрошлаковый переплав и рафинирование жидким синтетическим шлаком.
Непрерывная разливка стали представляет собой процесс получения слитков на машинах непрерывного литья. Ее сущность заключается в непрерывной подаче расплавленного металла в специальный кристаллизатор, где он охлаждается и непрерывно вытягивается валками со скоростью, равной скорости кристаллизации. После окончательного охлаждения и затвердевания слиток режется на заготовки.
Слитки непрерывной разливки по сравнению с получаемыми в изложницах имеют большую степень чистоты поверхности, мелкозернистую структуру, менее развитую химическую неоднородность (ликвацию), в них отсутствует усадочная раковина. Непрерывная разливка резко уменьшает потери металла в отходы, повышает производительность труда.
Вакуумирование жидкой стали применяется для получения высококачественных и некоторых высоколегированных марок стали. Оно позволяет очистить металл от газов, примесей неметаллических включений, повысить его механические свойства. Однако стоимость слитков значительно повышается. Вакуумирование производится в специальных вакуумных печах дугового, индукционного, электронно-лучевого или плазменного типов непосредственно перед разливкой или во время разливки стали.
Электрошлаковый переплав применяется для улучшения структуры, повышения пластичности и свариваемости слитков массой до 200 т. Этот метод представляет собой очистку жидкого металла от неметаллических включений и растворенных газов при его прохождении через слой шлака, содержащего значительное количество плавикового шпата.
Рафинирование стали жидким синтетическим шлаком применяется с целью ее раскисления, дополнительной очистки от серы и неметаллических включений, а также улучшения механических свойств. Для этого используют расплавленный шлак, состоящий из 55 % CaO и 45 % Аl2О3, с небольшим количеством кремнезема и возможно меньшим содержанием FeO (не более 1 %).
Виды термической и химико-термической обработки стали
Процессы термической обработки стали заключаются в ее нагреве и охлаждении, что вызывает изменение внутреннего строения, а следовательно, и свойств. К основным видам термической обработки относятся отжиг, нормализация, закалка, отпуск, патентирование и термомеханическая обработка.
Отжиг — это нагрев металла до 200—1200°C, длительная выдержка при этой температуре и медленное (иногда вместе с печью) охлаждение В зависимости от исходного состояния стали и температуры нагрева различают полный, неполный, низкий, изотермический, сфероидизирующий, гомогенизационный, рекристаллизационный отжиг, а также отжиг для снятия остаточных напряжений.
Полный отжиг применяется для сортового проката, поковок и фасонных отливок из стали с целью создания мелкозернистой структуры, повышения вязкости и пластичности Температура нагрева 730—950°C.
Неполный отжиг применяется для снижения твердости сталей и улучшения их обрабатываемости резаньем. Он осуществляется при температурах 730—950°C.
Изотермический отжиг (930—950°C) используют обычно для штамповок, заготовок инструментов и других изделий небольшого размера из легированных сталей с целью улучшения обрабатываемости резаньем и повышения чистоты поверхности.
Низкому отжигу (650—680°C) подвергается обычно сортовой прокат из легированной стали (для снижения твердости) или углеродистые стали, если они предназначены для обработки резаньем, холодной высадки или волочения.
Сфероидизирующий отжиг (750—820°C) проводится для снижения твердости, повышения показателей относительного удлинения и сужения
Гомогенизационный (диффузионный) отжиг (1100—1200°C) применяется для слитков и крупных отливок из легированной стали с целью уменьшения ликвации, рекристаллизационный (650—760°C) — для устранения наклепа и повышения пластичности стали, деформированной в холодном состоянии,
Отжиг для снятия остаточных напряжений (200—700°C) применяют для уменьшения внутренних напряжений изделий, полученных литьем, сваркой, резаньем и др.
2. Нормализация — это нагрев стали до 850—950°C, непродолжительная выдержка и охлаждение на воздухе. В результате измельчается зерно полученных при литье, прокатке, ковке или штамповке изделий и заготовок. Нормализация широко применяется вместо отжига и закалки. Закалка — это нагрев стали до 227—860°C, выдержка и быстрое охлаждение в воде, масле или другой среде. Ее применяют для повышения твердости, износостойкости и прочности инструментальных сталей, а также прочности, твердости, достаточно высокой износостойкости и пластичности конструкционных сталей. Основные параметры закалки — температура нагрева и скорость охлаждения. Последняя оказывает решающее влияние на результат закалки.
Для повышения твердости, износостойкости и предела выносливости обрабатываемого изделия при сохранении вязкой и восприимчивой к ударным нагрузкам его сердцевины осуществляют поверхностную закалку. Наиболее часто применяется поверхностная закалка с индукционным нагревом током высокой частоты. Для этого изделия помещают в переменное магнитное поле. Нагрев осуществляется вследствие теплового действия индуктируемого в изделие тока. Поверхностной индукционной закалке, как правило, подвергаются углеродистые стали с содержанием углерода от 0,4 до 0,5 %.
Чтобы уменьшить хрупкость и внутренние напряжения, вызванные закалкой, а также получить сталь с оптимальным сочетанием прочности, пластичности и ударной вязкости, ее подвергают отпуску. Этот процесс представляет собой нагрев металла до 200—680°C, выдержку и последующее охлаждение с определенной скоростью.
Различают отпуск низкотемпературный (для режущего и мерительного инструмента из углеродистых и низколегированных сталей), среднетемпературный (для пружин и штампов) и высокотемпературный (для среднеуглеродистых конструкционных сталей, к которым предъявляются высокие требования по пределу выносливости и ударной вязкости).
Патентирование — это процесс нагрева стали до 870— 950°C, охлаждения до 450—550°C, длительной выдержки при этой температуре и дальнейшего охлаждения на воздухе или в воде. Патентирование проводится для улучшения пластичности проволоки перед последующим ее волочением.
Термомеханическая обработка представляет собой сочетание пластической деформации (прокатки, ковки, штамповки и других способов обработки давлением) и закалки. В результате одновременно повышается сопротивление пластической деформации и разрушению.
Химико-термические методы обработки стали предполагают изменение не только структуры, но и химического состава ее поверхности Это осуществляется диффузионным насыщением поверхностного слоя соответствующими элементами, т. е нагревом стального изделия до заданной температуры и выдерживанием его в среде этих элементов. Наиболее распространенными видами химико-термической обработки являются цементация, азотирование, нитроцементация, цианирование, борирование, силицирование и диффузионная металлизация.
Цементация (науглероживание) — это процесс насыщения поверхности стали углеродом при температуре 930—950°C. После цементации изделия подвергаются закалке и низкому отпуску В результате их поверхность становится более твердой (при температурах до 200— 225°C), износостойкой, выносливой при изгибе и кручении Цементация проводится в твердой или газообразной насыщающей среде (карбюризаторе). В качестве твердого карбюризатора используется древесный уголь или каменноугольный полукокс и торфяной кокс с углекислым: барием и кальцинированной содой. В качестве газообразного карбюризатора используют природный газ.
Азотирование — это процесс насыщения поверхности стали азотом при нагреве до температуры 500—650°C в среде аммиака Посредством азотирования поверхности стали придается высокая твердость (сохраняется при нагреве до температуры 450—550°C), износостойкость, сопротивление коррозии.
Нитроцементация — это процесс насыщения поверхности стали одновременно углеродом и азотом при 840— 860°C в среде природного газа и аммиака. В результате повышается твердость и износостойкость поверхностного слоя стальных деталей
Цианирование — это процесс насыщения поверхности стали одновременно углеродом и азотом при 820—950°C в расплавленных цианистых солях для повышения ее твердости, износостойкости и предела выносливости.
Борирование — это процесс насыщения поверхности стали бором при 850—950°C для повышения ее твердости, абразивной, коррозионной износостойкости и теплостойкости.
Силицирование — это процесс насыщения поверхности кремнием. Силицированный слой стали отличается высокой коррозионной стойкостью в морской воде, химической стойкостью в азотной, серной и соляной кислотах, а также устойчивостью против износа. Диффузионная металлизация — это процесс насыщения поверхности стали алюминием, хромом, цинком и другими металлами, придающими ей те или иные свойства. Насыщение алюминием (алитирование) производится для повышения окалиностойкости и коррозионной стойкости в атмосфере и морской воде. Насыщение хромом (хромирование) обеспечивает коррозионную стойкость в морской и пресной воде, азотной кислоте, окалиностойкость, повышение твердости и износостойкости. Насыщение цинком (цинкование) применяется для повышения коррозионной стойкости в атмосфере, бензине, маслах и горючих газах, содержащих сероводород.
Классификация и ассортимент стали
Различные виды стали рассматривают в зависимости от особенности ее производства, химического состава, раскисления, качества, назначения и др. (рис. 11),
При этом основным признаком классификации стали является ее химический состав. По этому признаку сталь подразделяется на углеродистую и легированную.
Углеродистой называется сталь, не содержащая каких-либо специальных добавок. Она выпускается конструкционная и инструментальная. Конструкционная углеродистая сталь содержит 0,1—0,85 % С и применяется для изготовления конструкций, сооружений, деталей машин, инструментальная (0,65—1,4 % С) — режущего, измерительного, штамповочного и других видов инструмента.
Конструкционная углеродистая сталь изготавливается обыкновенного качества, качественная, а также повышенной и высокой обрабатываемости резаньем (автоматная).

Рис 11. Классификация стали.
Сталь углеродистая обыкновенного качества (ГОСТ 380—71) применяется для изготовления сварных и клепаных конструкций в строительстве и машиностроении. В зависимости от гарантируемых характеристик качества она подразделяется на три группы поставки — А, Б и В (табл. 10).
Таблица 10. Марочный состав стали углеродистой обыкновенного качества
Группы стали Содержание углерода, %
А Б В
Ст0 БСт0 - Менее 0,06
Ст 1 БСт1 ВСт1 0,06—0,12
Ст2 БСт2 ВСт2 0,09—0,15
Ст3 БСт3 ВСт3 0,14—0,22
Ст4 БСт4 ВСт4 0,18—0,26
Ст5 БСт5 ВСт5 0,28—0,37
Ст6 БСтб — 0,38—0,49
Сталь группы А поставляется по механическим свойствам. Для сталей этой группы химический состав не регламентируется, так как детали, изготавливаемые из нее, не подвергаются горячей обработке (ковке, сварке, термической обработке). Чем больше номер марки, тем выше прочность, но ниже пластичность стали.
В зависимости от нормируемых показателей (механических свойств) сталь группы А подразделяется на три категории.
Сталь группы Б поставляется по химическому составу. Для сталей этой группы механические свойства не регламентируются. Так как известен химический состав, детали из стали группы Б можно подвергать термической обработке.
В зависимости от нормируемых показателей (механических свойств) сталь группы Б подразделяется на две категории.
Сталь группы В поставляется по механическим свойствам с дополнительными требованиями по химическому составу. В зависимости от нормируемых показателей (механических свойств) она подразделяется на шесть категорий.
В маркировке: Б и В — группы стали (группа А в маркировке не обозначается), Cт — сталь, цифры — условный номер марки в зависимости от химического состава и механических свойств.
Сталь углеродистая обыкновенного качества выпускается кипящая, полуспокойная и спокойная, что обозначается соответственно буквами кп, пс и сп, записываемыми после условного номера марки. Например, Ст5пс, Ст3кп. Буква Г указывает на повышенное содержание марганца (Ст3Гпс), цифра в конце — номер категории (Ст3пс-2; БСт3-2) Для сталей первой категории цифра в конце не проставляется.
Сталь углеродистая качественная (ГОСТ 1050—74) используется в основном в машиностроении По сравнению со сталью обыкновенного качества к ней предъявляются более жесткие требования по содержанию вредных примесей, особенно фосфора и серы. Так, в качественных сталях всех марок содержание серы допускается не более 0,04%, фосфора — не более 0,035%.
Сталь углеродистая качественная конструкционная выпускается марок 08, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 58, 60, кипящая (КП), полуспокойная (ПС) и спокойная (СП). Цифра в обозначении марки указывает на среднее содержание углерода в сотых долях процента
По требованиям к испытанию механических свойств сталь выпускается пяти категорий, а по назначению — трех подгрупп а — для горячей обработки давлением, б — для холодной обработки давлением и в — для холодного волочения, что отражается в маркировке Например, 30-а-2, где 30 — марка стали, а — подгруппа, 2 — категория.
Сталь конструкционная повышенной и высокой обрабатываемости резаньем (ГОСТ 1414—75 E) предназначена для массового изготовления на металлорежущих станках-автоматах различных машиностроительных деталей Поэтому она называется также автоматная Выпускается эта сталь по состоянию металла трех подгрупп а — для горячей обработки давлением, — для механической обработки, в — для холодного

Ви переглядаєте статтю (реферат): «Химический состав стали» з дисципліни «Товарознавство сировини і матеріалів»

Заказать диплом курсовую реферат
Реферати та публікації на інші теми: Аудит витрат на виробництво продукції тваринництва
Індивідуальна вартість джерел капіталу
Інші моделі протоколів
Діалектна лексика
Технічні засоби для організації локальних мереж типу ARCNET; прав...


Категорія: Товарознавство сировини і матеріалів | Додав: koljan (29.09.2012)
Переглядів: 4532 | Рейтинг: 0.0/0
Всього коментарів: 0
Додавати коментарі можуть лише зареєстровані користувачі.
[ Реєстрація | Вхід ]

Онлайн замовлення

Заказать диплом курсовую реферат

Інші проекти




Діяльність здійснюється на основі свідоцтва про держреєстрацію ФОП