Проверка соответствия ряда распределения закону Пуассона
Таможенная инспекция провела проверку после выпуска товаров. В результате получен следующий дискретный ряд распределения числа нарушений, выявленных в каждой проверке (табл. 16 ). Таблица 16 . Ряд распределения числа нарушений, выявленных таможенной инспекцией Число нарушений 0 1 2 3 Число проверок 24 4 2 1 Проведем анализ этого ряда распределения. Сначала рассчитаем среднее число нарушений в выборке, а также его дисперсию, для чего построим вспомогательную таблицу 17 . Таблица 17 . Ряд распределения числа нарушений, выявленных таможенной инспекцией Число нарушений X Число проверок f Xf (Х - )2 f m f’ m’ |f’– m’| 0 24 0 3,022 21,7 0,244 24 21,7 2,3 1 4 4 1,665 7,7 1,778 28 29,4 1,4 2 2 4 5,413 1,4 0,257 30 30,8 0,8 3 1 3 6,997 0,2 3,200 31 31 0 Итого 31 11 17,097 31 5,479
Среднее число нарушений в выборке по формуле (11) : = 11/31 = 0,355 (нарушений). Дисперсию определим по формуле (28) : = = 0,552 (нарушений2). Построив график этого распределения (полигон) – рис. 11 , видно, что данное распределение не похоже на нормальное.
Рис. 11 . Кривая распределения числа нарушений, выявленных таможенной инспекцией Из структурных характеристик ряда распределения можно определить только моду: Мо = 0, так как по данным табл. 17 такое число нарушений чаще всего встречается (f=24). По формуле (24) определим размах вариации: H = 3 – 0 = 3, что характеризует вариацию в 3 нарушения. По формуле (26) найдем среднее линейное отклонение: . Это означает, что в среднем число нарушений отклоняется от среднего их числа на 0,55. Среднее квадратическое отклонение рассчитаем не по формуле (28) , а как корень из дисперсии, которая уже была рассчитана нами выше: , тогда , т.е. в изучаемом распределении наблюдается некоторое число выделяющихся нарушений (с большим числом нарушений, выявленных в одной проверке). Поскольку квартили на предыдущем этапе не определялись, на данном этапе расчет среднего квартильного расстояния пропускаем. Теперь рассчитаем относительные показатели вариации: относительный размах вариации по формуле (32) : = 3/0,355 = 8,45; линейный коэффициент вариации по формуле (33) : = 0,550/0,355 = 1,55; квадратический коэффициент вариации по формуле (34) : = 0,743/0,355 = 2,09. Все расчеты на данном этапе свидетельствуют о значительных размере и интенсивности вариации нарушений, выявленных таможенной инспекцией. Не имеет практического смысла расчет моментов распределения, так как видно из рис. 11 , что в изучаемом распределении симметрия отсутствует вовсе, поэтому и расчет эксцесса также бесполезен. Выдвинем гипотезу о соответствии изучаемого распределения распределению Пуассона , которое описывается формулой (48) : , (48 ) где P(X) – вероятность того, что признак примет то или иное значение X; e = 2,7182 – основание натурального логарифма; X! – факториал числа X (т.е. произведение всех целых чисел от 1 до X включительно); a = – средняя арифметическая ряда распределения. Из формулы (48) видно, что единственным параметром распределения Пуассона является средняя арифметическая величина. Порядок определения теоретических частот этого распределения следующий: рассчитать среднюю арифметическую ряда, т.е. = a; рассчитать e–a; для каждого значения X рассчитать теоретическую частоту по формуле (49) : . (49 ) Поскольку a = = 0,355 найдем значение e – 0,355 =0,7012. Затем, подставив в формулу (49) значения X от 0 до 3, вычислим теоретические частоты: m0 = (т.к. 0! = 1); m1 = ; m2 = ; m3 = . Полученные теоретические частоты занесем в 5-й столбец табл. 17 и построим график эмпирического и теоретического распределений (рис. 12 ), из которого видна близость эмпирического и теоретического распределений.
Рис. 12 . Эмпирическая и теоретическая (распределение Пуассона) кривые распределения Проверим выдвинутую гипотезу о соответствии изучаемого распределения закону Пуассона с помощью критериев согласия. Рассчитаем значение критерия Пирсона χ2 по формуле (44) в 6-м столбце табл. 17 : χ2 =5,479, что меньше табличного (Приложение 3) значения χ2табл=5,9915 при уровне значимости α = 0,05 и числе степеней свободы ν=4–1–1=2, значит с вероятностью 0,95 можно говорить, что в основе эмпирического распределения лежит закон распределения Пуассона, т.е. выдвинутая гипотеза не отвергается, а расхождения объясняются случайными факторами. Определим значение критерия Романовского по формуле (46) : = 1,74 < 3, что подтверждает несущественность расхождений между эмпирическими и теоретическими частотами. Для расчета критерия Колмогорова в последних трех столбцах таблицы 17 приведены расчеты накопленных частот и разностей между ними, откуда видно, что в 1-ой группе наблюдается максимальное расхождение (разность) D = 2,3. Тогда по формуле (47) : . По таблице Приложения 6 находим значение вероятности при λ = 0,4: P = 0,9972 (наиболее близкое значение к 0,413), т.е. с вероятностью, близкой к единице, можно говорить, что в основе эмпирического распределения величины нарушений, выявленных таможенной инспекцией, лежит закон распределения Пуассона, а расхождения эмпирического и теоретического распределений носят случайный характер.
Ви переглядаєте статтю (реферат): «Проверка соответствия ряда распределения закону Пуассона» з дисципліни «Теорія статистики»