Напомним, что под вечной рентой (perpetuity) понимается ряд платежей, количество которых не ограничено — теоретически она выплачивается в течение бесконечного числа лет. В практике иногда сталкиваются со случаями, когда есть смысл прибегнуть к такой абстракции, например, когда предполагается, что срок потока платежей очень большой и конкретно не оговаривается. Примером могут служить некоторые виды облигаций (см. гл. 11). Очевидно, что наращенная сумма вечной ренты равна бесконечно большой величине. На первый взгляд представляется бессодержательным и определение современной стоимости такой ренты. Однако это далеко не так. Современная величина вечной ренты есть конечная величина, которая определяется весьма просто. Выше было показано (см. (5.15)), что при п -+ оо пределом для коэффициента приведения является аж.. = 1//. Откуда для вечной ренты находим д. = у- <5-41> 122
Таким образом, современная стоимость вечной ренты зависит только от размера члена ренты и процентной ставки. Из (5.41) следует R = AJ9 (5.42) т.е. член вечной ренты равен проценту от ее капитализированной стоимости. Нетрудно убедиться в том, что отдаленные платежи оказывают весьма малое влияние на величину коэффициента приведения. С ростом п прирост этого показателя уменьшается (см. рис. 5.2). В силу сказанного при больших сроках ренты и высоком уровне ставки для определения современной стоимости можно воспользоваться формулой (5.41) без заметной потери точности. Например, для ограниченной ренты при / = 20%, п = 100 и R = 1 получим точное значение: А = 4,999999, а по формуле (5.41) находим Ах= 5. Для других видов рент получим: 4.- р[(1+ 0./,_ ,j при/>>1,«=1; Ада = — при р = т > 1. ПРИМЕР 5.20. Требуется выкупить вечную ренту, член которой равен 5 млн руб., выплачиваемых в конце каждого полугодия. Капитализированная стоимость такой ренты при условии, что для ее определения применена годовая ставка 25%, составит: А* = 2(1,25^- 1) = 42,361 МЛН Руб*
Ви переглядаєте статтю (реферат): «Вечная рента» з дисципліни «Фінансова математика»