ДИПЛОМНІ КУРСОВІ РЕФЕРАТИ


ИЦ OSVITA-PLAZA

Реферати статті публікації

Пошук по сайту

 

Пошук по сайту

Головна » Реферати та статті » Економічні теми » Математична економіка

Временные параметры сетевого графика
Каждой дуге сетевого графика поставим в соответствие некоторое
число, соответствующее продолжительности работы, отображаемой
данной дугой. Число, приписанное дуге (i,j), будем называть длиной
дуги и обозначать tij.
Множество дуг, упорядоченное таким образом, что конечное
событие одной из них является начальным событием другой,
называется путем.
Рассмотрим небольшой пример.




Рис. 2.4.4
Будем различать четыре вида пути:
а). Полный путь – путь, начало которого совпадает с исходным
событием сети, конец – с завершающим, например, (0,1)-(1,4)-(4,5)-
(5,6) или (0,2)-(2,4)-(4,6).
б). Путь, предшествующий событию – это путь от исходного
события до данного события, например, для события 4
предшествующими путями будут (0,2)-(2,4) и (0,1)-(1,4).
в). Путь, следующий за событием – это путь от данного события до
завершающего, например, для события 2 это пути (2,4)-(4,5)-(5,6) и
(2,4)-4,6).
г). Путь между двумя событиями – путь, начало и конец которого
совпадают с соответствующими событиями, например, между
событиями 2 и 5 лежит путь (2,4)-(4,5).
Под длиной пути будем понимать продолжительность выполнения
всей последовательности работ, составляющих данный путь.
Таким образом, длина пути равна сумме длин всех дуг данного
пути.
4


149
Наиболее продолжительный полный путь в сетевом графике
называется критическим. Критическими называются также работы и
события, расположенные на этом пути.
Рассмотрим еще один пример сетевого графика. Цифры на каждой
дуге означают продолжительности работ.
4 3 3
2
3 4 5
6 1 8
5
2 10
Рис. 2.4.5
Здесь полными путями будут:
путь (0,1)-(1,3)-(3,6)-(6,8) продолжительностью 2+4+3+3=12,
путь (0,3)-(3,6)-(6,8) продолжительностью 3+3+3=9,
путь (0,2)-(2,3)-(3,6)-(6,8) продолжительностью 5+6+3+3=17,
путь (0,2)-(2,5)-(5,7)-(7,8) продолжительностью 5+1+8+5=19,
путь (0,2)-(2,5)-(5,8) продолжительностью 5+1+4=10 и
путь (0,2)-(2,4)-(4,7)-(7,8) продолжительностью 5+2+10+5=22.
Перебрав все полные пути, мы видим, что последний путь имеет
наибольшую продолжительность, поэтому он и является критическим
(далее мы приведем способ определения критического пути без
перебора всех полных путей). Продолжительность критического пути
составляет 22 (например, дня), т.е. для проведения всего комплекса
работ понадобится 22 дня. Быстрее комплекс выполнить нельзя, так
как для достижения цели (завершающего события) работы
критического пути надо выполнить обязательно. Определив
критический путь, мы тем самым установили критические события
сети 0, 2, 4, 7, 8 и критические работы (0,2), (2,4), (4,7), (7,8).
Критический путь имеет особое значение в системах сетевого
планирования и управления. Действительно, срыв сроков выполнения
какой-либо работы критического пути влечет срыв срока выполнения
всего комплекса в целом, и, с другой стороны, для сокращения
продолжительности проекта необходимо в первую очередь сокращать
продолжительность работ, лежащих на критическом пути.
Временные параметры сети состоят из временных параметров
событий и временных параметров работ. Рассмотрим содержание и
алгоритм расчета параметров событий.
Временем Тj наступления (или свершения) события j считается
момент окончания всех работ, входящих в это событие.
0


150

Минимальное (самое раннее)
время Тjо наступления события j равно
длине максимальному из путей, предшествующих данному событию.
Очевидно, что это время является и самым ранним временем начала
работ, выходящих из этого события. Например, в последнем примере
событие 3 может свершиться не ранее, чем через 11 дней от исходного
события, т.к. наибольшая длина пути, предшествующего данному
событию (пути (0,2)-(2,3)) равна 11.

Критическим временем
выполнения комплекса работ будем
называть раннее время наступления завершающего события.
Критическое время – это минимальное количество времени,
необходимое для выполнения всего комплекса работ, очевидно,
совпадает с длиной критического пути.
Для вычисления Тjо необходимо сначала рассмотреть все события
i, соединенные дугой (i,j) с данным событием j, вычислить для них
ранние времена и при этом на каждом шаге использовать формулу
Тjо =max⎨ Тiо + tij⎬ (2.4.1)
∀i
Вычисления начинаются с исходного события и продолжаются до
тех пор, пока не будет достигнуто завершающее событие всей сети.
Проиллюстрируем алгоритм вычисления ранних времен.
Принимаем Т0о =0. Поскольку в событие 1 входит только одна
работа (0,1) продолжительностью t01=2, то Т1о = Т0о + t01 =0+2=2.
Рассмотрим далее событие 2 (Заметим, что событие 3 пока
рассматривать нельзя, так как срок Т2о еще неизвестен). Таким
образом, Т2о =Т0о + t02 =0+5=5. Перейдем теперь к событию 3.
Поскольку в него входят три дуги (0,3),(2,3) и (1,3), то
Т3о =max⎨ Тiо + ti3⎬= max⎨ 0 + 3; 2+4; 5+6⎬=11.
i=0,1,2
Вычисления продолжаем аналогичным образом, пока не будут
определены значения Тjо для всех событий j. Имеем
Т4о = Т2о + t24 = 5 + 2 = 7,
Т5о = Т2о + t25 = 5 + 1 = 6,
Т6о = Т3о + t36 = 11 + 3 = 14,
Т7о =max⎨ Тiо + ti7⎬= max⎨7+10; 6+8⎬=17,
i=4,5
Т8о =max⎨ Тiо + ti8⎬= max⎨6+4; 14+3; 17+5⎬=22.
i=5,6,7
На этом вычисления Тiо заканчиваются.
Теперь от завершающего события к исходному (справа налево)
определяем Тi1 – максимально допустимый (поздний) срок
завершения всех работ, входящих в данное событие, при котором


151
критическое время выполнения всего комплекса работ останется
неизменным. Если обозначить n – завершающее событие сети, то
Тn1=Тn0 является отправной точкой алгоритма вычисления поздних
сроков. В общем виде для любого события i,
Тi1 =min ⎨ Тj1 – tij⎬ для всех дуг (i,j). (2.4.2)
∀j
Вычислим значения Тi1 на последнем примере (рис.2.4.5).
Т81 = Т80=22,
Т71 = Т81 – t78 = 22 – 5 = 17,
Т
6
1 = Т
8
о – t
68 = 22 – 3 = 19,

Т
5
1 =min ⎨ Т
j
1 – t
5j⎬= min⎨17–8; 22 – 4⎬=9,

j=7,8
Т41 = Т71 – t47 = 17 – 10 = 7,
Т
3
1 = Т
6
1 – t
36 = 19 – 3 = 16,

Т
2
1 =min ⎨Т
j
о – t
2j⎬= min⎨16–6; 7 – 2; 9 – 1⎬=5,

j=3,4,5
Т11 = Т31 – t13 = 16 – 4 = 12,
Т
0
1 =min ⎨Т
j
1 – t
0j⎬= min⎨12–2; 5 – 5; 16 – 3⎬=0.
j=1,2,3
Определим резерв времени Ri i-го события как разность между
поздним и ранним сроками его свершения:
Ri = Тi1 – Тi0 (2.4.3)
Резерв времени события показывает, на какой допустимый период
времени можно задержать наступление данного события, не вызывая
при этом увеличения срока выполнения комплекса работ. Сведем
результаты вычислений значений Тi1 , Тiо и Ri в таблицу:
Таблица 2.4.1
Сроки свершения
события
Номер
события
Ранний ТiоПоздний Тi1
Резерв
времени
Ri
0 0 0 0
1 2 12 10
2 5 5 0
3 11 16 5
4 7 7 0
5 6 9 3
6 14 19 5
7 17 17 0
8 22 22 0


152
Теперь, используя данные табл. 2.4.1, можно определить работы
критического пути (без полного перебора полных путей). Работа (i,j)
принадлежит критическому пути, если она удовлетворяет следующим
трем условиям:
Тi0=Тi1
Тjо = Тj1 (2.4.4)
Тjо – Тiо =Тj1 – Тi1 = tij
По существу, эти условия означают, что между ранним сроком
начала (окончания) и поздним сроком начала (окончания) критической
работы запас времени отсутствует. Условиям (2.4.4) удовлетворяют
работы (0,2), (2,4), (4,7) и (7,8), т.е. они образуют критический путь, в
чем мы и ранее убедились перебором всех полных путей.
Временные параметры работ.
Различают несколько разновидностей резервов времени работ,
мы рассмотрим два основных вида: полный резерв и свободный
резерв. Полный резерв работы (i,j) определяется по формуле:
Rпij=Тj1 – Тi0 – tij (2.4.5)
Rпij показывает, на сколько можно увеличить время выполнения
данной работы при условии, что срок выполнения всего комплекса
работ не изменится. Кроме того, полный резерв времени есть разность
между критическим временем и длиной максимального полного пути,
проходящего через эту работу.
Полный резерв критических работ равен 0. У некритических работ
Rпij>0. При использовании полного резерва времени только для одной
работы резервы времени остальных работ, лежащих на максимальном
пути, проходящем через нее, будут полностью исчерпаны, т.е.
увеличение продолжительности некритической работы за счет
использования всего ее полного резерва обязательно влечет появление
нового критического пути, в состав которого войдет эта работа.
Опоздание начала некритической работы (i,j) по сравнению с Тi0 на
всю величину ее полного резерва влечет за собой необходимость
начинать все работы, выходящие из события j в наиболее позднее
допустимое время Тj1 наступления этого события.
Свободный резерв времени Rсij работы (i,j) представляет часть
полного резерва времени, на которую можно увеличить
продолжительность работы, не изменив при этом раннего срока ее
конечного события. Этим резервом можно располагать при
выполнении данной работы в предположении, что ее начальное и
конечное события свершаются в свои самые ранние сроки.
Rсij=Тj0 – Тi0 – tij (2.4.6)


153
Таким образом, свободный резерв времени может быть использован
на увеличение продолжительности данной и предшествующих работ
без нарушения резерва времени последующих работ.
Для рис. 2.4.5 проведем вычисления по формулам (2.4.5), (2.4.6):
Таблица 2.4.2
(i,j) tij Тi0 Тj1 Rпij Rсij
(0,1) 2 0 12 10 0
(0,2) 5 0 5 0 0
(0,3) 3 0 16 13 8
(1,3) 4 2 16 10 5
(2,3) 6 5 16 5 0
(2,4) 2 5 7 0 0
(2,5) 1 5 9 3 0
(3,6) 3 11 19 5 0
(4,7) 10 7 17 0 0
(5,7) 8 6 17 3 3
(5,8) 4 6 22 12 12
(6,8) 3 14 22 5 5
(7,8) 5 17 22 0 0
В табл. 2.4.2 приведены результаты расчетов временных параметров
работ. Она содержит всю необходимую для построения календарного
плана (графика) информацию. Когда полный резерв равен 0,
свободный резерв также должен быть равен 0. Однако обратное
неверно, поскольку свободный резерв некритической работы также
может быть нулевым (например, работы (0,1), (2,3)).
Конечным результатом выполняемых на сетевой модели расчетов
является календарный график (план). При построении календарного
графика необходимо учитывать наличие ресурсов, так как
одновременное выполнение некоторых работ из-за ограничений,
связанных с рабочей силой, оборудованием, материальными и другими
видами ресурсов, может оказаться невозможным. Проблемам
оптимизации потребления ограниченных ресурсов на основе сетевых
моделей посвящен пункт 2.4.8. Далее на нашем примере (исходный
график на рис. 2.4.5, расчетные данные в табл.2.4.2) иллюстрируется
процедура построения календарного плана при отсутствии
ограничений на ресурсы. Результат на рис 2.4.6.





154
Рабо
ты

(7,8)
(6,8)
(4,7)
(5,8)
(5,7)
(3,6)
(2,3)
(2,5)
(2,4)
(1,3)
(0,3)
(0,2)
(0,1)
0 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22
Рис. 2.4.6
Пояснения к рис. 2.4.6. Стрелками на графике обозначены:
критические работы,
некритические работы,
полные резервы,
свободные резервы (как часть полных).
Все работы выставлены на графике в
ранние сроки
начала.

Ви переглядаєте статтю (реферат): «Временные параметры сетевого графика» з дисципліни «Математична економіка»

Заказать диплом курсовую реферат
Реферати та публікації на інші теми: Методика розрахунку витрат
ЗАГАЛЬНІ ПЕРЕДУМОВИ ТА ЕКОНОМІЧНІ ЧИННИКИ, ЩО ОБУМОВЛЮЮТЬ НЕОБХІД...
Аудит кредитних операцій
СУТНІСТЬ, ПРИЗНАЧЕННЯ ТА ВИДИ ФІНАНСОВОГО ПОСЕРЕДНИЦТВА
ДИЗАЙН, ЙОГО ОБ’ЄКТИ ТА ПРОГРАМИ


Категорія: Математична економіка | Додав: koljan (08.11.2011)
Переглядів: 1164 | Рейтинг: 0.0/0
Всього коментарів: 0
Додавати коментарі можуть лише зареєстровані користувачі.
[ Реєстрація | Вхід ]

Онлайн замовлення

Заказать диплом курсовую реферат

Інші проекти




Діяльність здійснюється на основі свідоцтва про держреєстрацію ФОП